Non-Convex Quadratic Programming Problems in Short Wave Antenna Array Optimization

被引:1
|
作者
Eremeev, Anton V. [1 ,2 ]
Tyunin, Nikolay N. [1 ]
Yurkov, Alexander S. [3 ]
机构
[1] Sobolev Inst Math, Omsk, Russia
[2] Dostoevsky Omsk State Univ, Omsk, Russia
[3] RAS, Omsk Sci Ctr SB, Inst Radiophys & Phys Elect, Omsk, Russia
关键词
Quadratic programming; Local optima; Antenna array; Gradient optimization; Computational experiment; GLOBAL OPTIMIZATION; BEAM;
D O I
10.1007/978-3-030-22629-9_3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we describe a non-convex constrained quadratic programming problem arising in short wave transmitting antenna array synthesis and provide preliminary computational results. We consider problem instances for three different antenna designs including up to 25 radiators. In the computational experiments, BARON package is compared to the gradient optimization method, applied to the unconstrained problem formulation using the penalty function method. Global optimality of the obtained solutions is established using BARON package the smallest instances of 4 radiators. On small instances, both methods have demonstrated similar results, while on larger instances significant difference has been observed. The set of local optima is studied experimentally. It is established that even though the problem instances have numerous local optima, the objective function in many local optima has the same value.
引用
收藏
页码:34 / 45
页数:12
相关论文
共 50 条
  • [1] A new accelerating method for global non-convex quadratic optimization with non-convex quadratic constraints
    Wu, Huizhuo
    Zhang, KeCun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) : 810 - 818
  • [2] CLASS OF NON-CONVEX OPTIMIZATION PROBLEMS
    HIRCHE, J
    TAN, HK
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (04): : 247 - 253
  • [3] A binarisation heuristic for non-convex quadratic programming with box constraints
    Galli, Laura
    Letchford, Adam N.
    [J]. OPERATIONS RESEARCH LETTERS, 2018, 46 (05) : 529 - 533
  • [4] Approximating Non-convex Quadratic Programs by Semidefinite and Copositive Programming
    Povh, Janez
    Rendl, Franz
    [J]. KOI 2006: 11TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH, PROCEEDINGS, 2008, : 35 - +
  • [5] On the separation of split inequalities for non-convex quadratic integer programming
    Buchheim, Christoph
    Traversi, Emiliano
    [J]. DISCRETE OPTIMIZATION, 2015, 15 : 1 - 14
  • [6] Unbounded convex sets for non-convex mixed-integer quadratic programming
    Samuel Burer
    Adam N. Letchford
    [J]. Mathematical Programming, 2014, 143 : 231 - 256
  • [7] Unbounded convex sets for non-convex mixed-integer quadratic programming
    Burer, Samuel
    Letchford, Adam N.
    [J]. MATHEMATICAL PROGRAMMING, 2014, 143 (1-2) : 231 - 256
  • [8] STABILITY FOR A CLASS OF NON-CONVEX OPTIMIZATION PROBLEMS
    ZALINESCU, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (12): : 643 - 646
  • [9] EXISTENCE OF SOLUTIONS FOR NON-CONVEX OPTIMIZATION PROBLEMS
    BARANGER, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (04): : 307 - &
  • [10] On Graduated Optimization for Stochastic Non-Convex Problems
    Hazan, Elad
    Levy, Kfir Y.
    Shalev-Shwartz, Shai
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48