Topology of high-dimensional chaotic scattering

被引:21
|
作者
Lai, YC [1 ]
de Moura, APS
Grebogi, C
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[3] Arizona State Univ, Dept Phys, Ctr Syst Sci & Engn Res, Tempe, AZ 85287 USA
[4] Univ Maryland, Inst Plasma Res, College Pk, MD 20742 USA
[5] Univ Maryland, Inst Phys Sci & Technol, Dept Mat Sci, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 05期
关键词
D O I
10.1103/PhysRevE.62.6421
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate Hamiltonian chaotic scattering in physically realistic three-dimensional potentials. We find that the basin topology of the scattering dynamics can undergo a metamorphosis from being totally disconnected to being connected as a system parameter, such as the particle energy, is varied through a critical value. The dynamical origin of the metamorphosis is investigated, and the topological change in the scattering basin is explained in terms of the change in the structure of the invariant set of nonescaping orbits. A dynamical consequence of this metamorphosis is that the fractal dimension of the chaotic set responsible for the chaotic scattering changes its behavior characteristically at the metamorphosis. This topological metamorphosis has no correspondence in two-degree-of-freedom open Hamiltonian systems.
引用
收藏
页码:6421 / 6428
页数:8
相关论文
共 50 条
  • [1] Topology of windows in the high-dimensional parameter space of chaotic maps
    Baptista, MS
    Grebogi, C
    Barreto, E
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (09): : 2681 - 2688
  • [2] STUDY OF A HIGH-DIMENSIONAL CHAOTIC ATTRACTOR
    IKEDA, K
    MATSUMOTO, K
    JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (5-6) : 955 - 983
  • [3] The chaotic dynamics of high-dimensional systems
    Marjan Abdechiri
    Karim Faez
    Hamidreza Amindavar
    Eleonora Bilotta
    Nonlinear Dynamics, 2017, 87 : 2597 - 2610
  • [4] The chaotic dynamics of high-dimensional systems
    Abdechiri, Marjan
    Faez, Karim
    Amindavar, Hamidreza
    Bilotta, Eleonora
    NONLINEAR DYNAMICS, 2017, 87 (04) : 2597 - 2610
  • [5] Formulation and analysis of high-dimensional chaotic maps
    Liu, Y.
    Tang, Wallace K. S.
    Kwok, H. S.
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 772 - 775
  • [6] Detecting determinism in high-dimensional chaotic systems
    Ortega, GJ
    Boschi, CDE
    Louis, E
    PHYSICAL REVIEW E, 2002, 65 (01):
  • [7] MULTIPARAMETER CONTROL OF HIGH-DIMENSIONAL CHAOTIC SYSTEMS
    WARNCKE, J
    BAUER, M
    MARTIENSSEN, W
    EUROPHYSICS LETTERS, 1994, 25 (05): : 323 - 328
  • [8] Particle filtering in high-dimensional chaotic systems
    Lingala, Nishanth
    Namachchivaya, N. Sri
    Perkowski, Nicolas
    Yeong, Hoong C.
    CHAOS, 2012, 22 (04)
  • [9] Discover the semantic topology in high-dimensional data
    Chiang, I-Jen
    EXPERT SYSTEMS WITH APPLICATIONS, 2007, 33 (01) : 256 - 262
  • [10] Topology in chaotic scattering
    David Sweet
    Edward Ott
    James A. Yorke
    Nature, 1999, 399 : 315 - 316