Impurity transport driven by ion temperature gradient turbulence in tokamak plasmas

被引:21
|
作者
Fueloep, T. [1 ,2 ]
Braun, S. [3 ]
Pusztai, I. [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Appl Phys, SE-41296 Gothenburg, Sweden
[2] Euratom VR Assoc, SE-41296 Gothenburg, Sweden
[3] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
关键词
STABILITY; MODE;
D O I
10.1063/1.3430639
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Impurity transport driven by electrostatic turbulence is analyzed in weakly collisional tokamak plasmas using a semianalytical model based on a boundary layer solution of the gyrokinetic equation. Analytical expressions for the perturbed density responses are derived and used to determine the stability boundaries and the quasilinear particle fluxes. For moderate impurity charge number Z, the stability boundaries are very weakly affected by the increasing impurity charge for constant effective charge, while for lower impurity charge the influence of impurities is larger, if the amount of impurities is not too small. Scalings of the mode frequencies and quasilinear fluxes with charge number, effective charge, impurity density scale length, and collisionality are determined and compared to quasilinear gyrokinetic simulations with GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] resulting in very good agreement. Collisions do not affect the mode frequencies, growth rates, and impurity fluxes significantly. The eigenfrequencies and growth rates depend only weakly on Z and Z(eff) but they are sensitive to the impurity density gradient scale length. An analytical approximate expression of the zero-flux impurity density gradient is derived and used to discuss its parametric dependencies. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3430639]
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Isotopic dependence of impurity transport driven by ion temperature gradient turbulence
    Guo, Weixin
    Wang, Lu
    Zhuang, Ge
    [J]. PHYSICS OF PLASMAS, 2016, 23 (11)
  • [2] Impurity transport in temperature gradient driven turbulence
    Skyman, A.
    Nordman, H.
    Strand, P.
    [J]. PHYSICS OF PLASMAS, 2012, 19 (03)
  • [3] Diffusive impurity transport driven by trapped particle turbulence in tokamak plasmas
    Gravier, E.
    Lesur, M.
    Garbet, X.
    Sarazin, Y.
    Medina, J.
    Lim, K.
    Idouakass, M.
    [J]. PHYSICS OF PLASMAS, 2019, 26 (08)
  • [4] Predictive simulations of tokamak plasmas with a model for ion-temperature-gradient-driven turbulence
    Redd, AJ
    Kritz, AH
    Bateman, G
    Horton, W
    [J]. PHYSICS OF PLASMAS, 1998, 5 (05) : 1369 - 1379
  • [5] Global structure of zonal flow and electromagnetic ion temperature gradient driven turbulence in tokamak plasmas
    Miyato, N
    Kishimoto, Y
    Li, J
    [J]. PHYSICS OF PLASMAS, 2004, 11 (12) : 5557 - 5564
  • [6] Stabilization of ion temperature gradient driven turbulence and formation of an internal transport barrier in a tokamak
    Voitsekhovitch, I
    Garbet, X
    Benkadda, S
    Beyer, P
    Figarella, CF
    [J]. PHYSICS OF PLASMAS, 2002, 9 (11) : 4671 - 4684
  • [7] Electron temperature gradient driven transport model for tokamak plasmas
    Rafiq, T.
    Wilson, C.
    Luo, L.
    Weiland, J.
    Schuster, E.
    Pankin, A. Y.
    Guttenfelder, W.
    Kaye, S.
    [J]. PHYSICS OF PLASMAS, 2022, 29 (09)
  • [8] Gyrokinetic simulations of an electron temperature gradient turbulence driven current in tokamak plasmas
    Yi, Sumin
    Jhang, Hogun
    Kwon, J. M.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (10)
  • [9] Intrinsic current driven by electromagnetic electron temperature gradient turbulence in tokamak plasmas
    He, Wen
    Wang, Lu
    Peng, Shuitao
    Guo, Weixin
    Zhuang, Ge
    [J]. NUCLEAR FUSION, 2018, 58 (10)
  • [10] Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak
    Shen Yong
    Dong Jia-Qi
    Xu Hong-Bing
    [J]. ACTA PHYSICA SINICA, 2018, 67 (19)