Learning to Cut by Watching Movies

被引:1
|
作者
Pardo, Alejandro [1 ]
Heilbron, Fabian Caba [2 ]
Alcazar, Juan Leon [1 ]
Thabet, Ali [1 ]
Ghanem, Bernard [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
[2] Adobe Res, San Jose, CA USA
关键词
D O I
10.1109/ICCV48922.2021.00678
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video content creation keeps growing at an incredible pace; yet, creating engaging stories remains challenging and requires non-trivial video editing expertise. Many video editing components are astonishingly hard to automate primarily due to the lack of raw video materials. This paper focuses on a new task for computational video editing, namely the task of raking cut plausibility. Our key idea is to leverage content that has already been edited to learn fine-grained audiovisual patterns that trigger cuts. To do this, we first collected a data source of more than 10K videos, from which we extract more than 255K cuts. We devise a model that learns to discriminate between real and artificial cuts via contrastive learning. We set up a new task and a set of baselines to benchmark video cut generation. We observe that our proposed model outperforms the baselines by large margins. To demonstrate our model in real-world applications, we conduct human studies in a collection of unedited videos. The results show that our model does a better job at cutting than random and alternative baselines.
引用
收藏
页码:6838 / 6848
页数:11
相关论文
共 50 条