The Autocovariance Least-Squares Technique for GPS Measurement Noise Estimation

被引:52
|
作者
Abdel-Hafez, Mamoun F. [1 ]
机构
[1] Amer Univ Sharjah, Dept Mech Engn, Sharjah 26666, U Arab Emirates
关键词
Global Positioning System (GPS); inertial navigation sensor; Kalman filtering; measurement noise estimation; statistical estimation; INS/GPS INTEGRATION; OBSERVABILITY; ENHANCEMENT; GPS/INS; MODEL;
D O I
10.1109/TVT.2009.2034969
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the autocovariance least-squares (ALS) technique is proposed to estimate the Global Positioning System (GPS) pseudorange measurement noise-covariance matrix. The large GPS measurement noise magnitude can be attributed to signal interference, jamming, or other factors, such as signal multipath. The proposed method makes use of the dynamics of the system measured by an inertial measurement unit (IMU) and the propagated residual of a GPS/IMU estimation filter to form a bank of statistics used to estimate the GPS measurement noise covariance. The method is used along an ultratightly coupled GPS/IMU filter to first estimate the measurement noise covariance matrix and then use this covariance matrix to obtain a high-accuracy and high-integrity state estimate. Simulated scenarios of different levels of noise magnitude are applied, and the proposed method is used to estimate the GPS pseudorange noise-covariance matrix.
引用
收藏
页码:574 / 588
页数:15
相关论文
共 50 条
  • [1] On Autocovariance Least-Squares Method for Noise Covariance Matrices Estimation
    Dunik, Jindrich
    Straka, Ondrej
    Simandl, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 967 - 972
  • [2] Noise Covariance Identification Using Autocovariance Least-Squares Technique for State Estimation of Quadrotor
    Wu, Jingyun
    Liu, Guoliang
    Huang, Tao
    2017 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) AND IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), 2017, : 88 - 93
  • [3] Robust autocovariance least-squares noise covariance estimation algorithm
    Li, Wei
    Lin, Xu
    Li, Shaoda
    Ye, Jiang
    Yao, Chaolong
    Chen, Changxin
    MEASUREMENT, 2022, 187
  • [4] Colored noise estimation algorithm based on autocovariance least-squares method
    Zhao Liqiang
    Wang Jianlin
    Yu Tao
    Chen Kunyun
    Jian Huan
    PROCEEDINGS OF 2015 IEEE 12TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), VOL. 1, 2015, : 481 - 486
  • [5] Noise covariance estimation via autocovariance least-squares with deadbeat filters
    Kong, He
    AUTOMATICA, 2023, 153
  • [6] Autocovariance least squares estimation for colored noise
    Lin, Xu
    Luo, Zhicai
    Xu, Chuang
    Zhou, Hao
    Lin, X. (1147489790@qq.com), 1600, SinoMaps Press (42): : 804 - 809
  • [7] A generalized autocovariance least-squares method for covariance estimation
    Akesson, Bemt M.
    Jorgensen, John Bagterp
    Jorgensen, Sten Bay
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 4449 - 4450
  • [8] Improved noise covariance estimation in visual servoing using an autocovariance least-squares approach
    Brown, Jasper
    Sua, Daobilige
    Kong, He
    Sukkarieh, Salah
    Kerrigan, Eric
    MECHATRONICS, 2020, 68
  • [9] A new autocovariance least-squares method for estimating noise covariances
    Odelson, BJ
    Rajamani, MR
    Rawlings, JB
    AUTOMATICA, 2006, 42 (02) : 303 - 308
  • [10] Improved noise covariance estimation in visual servoing using an autocovariance least-squares approach
    Brown, Jasper
    Su, Daobilige
    Kong, He
    Sukkarieh, Salah
    Kerrigan, Eric C.
    Mechatronics, 2020, 68