Joint Device Scheduling and Resource Allocation for Latency Constrained Wireless Federated Learning

被引:206
|
作者
Shi, Wenqi [1 ]
Zhou, Sheng [1 ]
Niu, Zhisheng [1 ]
Jiang, Miao [2 ]
Geng, Lu [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[2] Hitachi China Res & Dev Cooperat, Beijing 100190, Peoples R China
关键词
Federated learning; wireless networks; resource allocation; scheduling; convergence analysis;
D O I
10.1109/TWC.2020.3025446
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In federated learning (FL), devices contribute to the global training by uploading their local model updates via wireless channels. Due to limited computation and communication resources, device scheduling is crucial to the convergence rate of FL. In this paper, we propose a joint device scheduling and resource allocation policy to maximize the model accuracy within a given total training time budget for latency constrained wireless FL. A lower bound on the reciprocal of the training performance loss, in terms of the number of training rounds and the number of scheduled devices per round, is derived. Based on the bound, the accuracy maximization problem is solved by decoupling it into two sub-problems. First, given the scheduled devices, the optimal bandwidth allocation suggests allocating more bandwidth to the devices with worse channel conditions or weaker computation capabilities. Then, a greedy device scheduling algorithm is introduced, which selects the device consuming the least updating time obtained by the optimal bandwidth allocation in each step, until the lower bound begins to increase, meaning that scheduling more devices will degrade the model accuracy. Experiments show that the proposed policy outperforms state-of-the-art scheduling policies under extensive settings of data distributions and cell radius.
引用
收藏
页码:453 / 467
页数:15
相关论文
共 50 条
  • [1] Joint User Scheduling and Resource Allocation for Federated Learning over Wireless Networks
    Yin, Benshun
    Chen, Zhiyong
    Tao, Meixia
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [2] Joint Resource Allocation and Scheduling for Wireless Power Transfer Aided Federated Learning
    Song, Yuxiao
    Ji, Guangyuan
    Dai, Minghui
    Wu, Yuan
    Qian, Liping
    Lin, Bin
    2022 31ST WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2022, : 155 - 160
  • [3] Joint Device Scheduling and Bandwidth Allocation for Federated Learning over Wireless Networks
    Zhang T.
    Lam K.-Y.
    Zhao J.
    Feng J.
    IEEE Transactions on Wireless Communications, 2024, 23 (03)
  • [4] Joint Resource Allocation and User Scheduling Scheme for Federated Learning
    Shen, Jinglong
    Cheng, Nan
    Yin, Zhisheng
    Xu, Wenchao
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [5] Joint Scheduling and Resource Allocation for Hierarchical Federated Edge Learning
    Wen, Wanli
    Chen, Zihan
    Yang, Howard H.
    Xia, Wenchao
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (08) : 5857 - 5872
  • [6] Joint Device Participation, Dataset Management, and Resource Allocation in Wireless Federated Learning via Deep Reinforcement Learning
    Chen, Jinlian
    Zhang, Jun
    Zhao, Nan
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 4505 - 4510
  • [7] Device Selection and Resource Allocation for Layerwise Federated Learning in Wireless Networks
    Lee, Hyun-Suk
    IEEE SYSTEMS JOURNAL, 2022, 16 (04): : 6441 - 6444
  • [8] Federated Learning Over Wireless Channels: Dynamic Resource Allocation and Task Scheduling
    Chu, Shunfeng
    Li, Jun
    Wang, Jianxin
    Wang, Zhe
    Ding, Ming
    Zhang, Yijin
    Qian, Yuwen
    Chen, Wen
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (04) : 1910 - 1924
  • [9] Joint Client Scheduling and Wireless Resource Allocation for Heterogeneous Federated Edge Learning With Non-IID Data
    Yin, Tong
    Li, Lixin
    Lin, Wensheng
    Ni, Tao
    Liu, Ying
    Xu, Haitao
    Han, Zhu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5742 - 5754
  • [10] Device Scheduling and Resource Allocation for Federated Learning under Delay and Energy Constraints
    Shi, Wenqi
    Sun, Yuxuan
    Zhou, Sheng
    Niu, Zhisheng
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 596 - 600