Spatio-temporal representation for long-term anticipation of human presence in service robotics

被引:0
|
作者
Vintr, Tomas [1 ]
Yan, Zhi [2 ]
Duckett, Tom [3 ]
Krajnik, Tomas [1 ]
机构
[1] Czech Tech Univ, Artificial Intelligence Ctr, Prague, Czech Republic
[2] UTBM, Distributed Artificial Intelligence & Knowledge L, Belfort, France
[3] Univ Lincoln, Lincoln Ctr Autonomous Syst, Lincoln, England
关键词
PATTERNS;
D O I
10.1109/icra.2019.8793534
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose an efficient spatio-temporal model for mobile autonomous robots operating in human populated environments. Our method aims to model periodic temporal patterns of people presence, which are based on peoples' routines and habits. The core idea is to project the time onto a set of wrapped dimensions that represent the periodicities of people presence. Extending a 2D spatial model with this multidimensional representation of time results in a memory efficient spatio-temporal model. This model is capable of long-term predictions of human presence, allowing mobile robots to schedule their services better and to plan their paths. The experimental evaluation, performed over datasets gathered by a robot over a period of several weeks, indicates that the proposed method achieves more accurate predictions than the previous state of the art used in robotics.
引用
收藏
页码:2620 / 2626
页数:7
相关论文
共 50 条
  • [1] Long-term spatio-temporal drought variability in Turkey
    Dabanli, Ismail
    Mishra, Ashok K.
    Sen, Zekai
    [J]. JOURNAL OF HYDROLOGY, 2017, 552 : 779 - 792
  • [2] Long-term tracking based on spatio-temporal context
    Lu J.
    Chen Y.
    Zou Y.
    Zou G.
    [J]. Chen, Yimin (ymchen@mail.shu.edu.cn), 1600, Shanghai Jiaotong University (22): : 504 - 512
  • [3] Long-Term Tracking Based on Spatio-Temporal Context
    陆佳辉
    陈一民
    邹一波
    邹国志
    [J]. Journal of Shanghai Jiaotong University(Science), 2017, 22 (04) : 504 - 512
  • [4] Sequence Recognition with Spatio-Temporal Long-Term Memory Organization
    Vu-Anh Nguyen
    Starzyk, Janusz A.
    Goh, Wooi-Boon
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [5] LSN: Long-Term Spatio-Temporal Network for Video Recognition
    Wang, Zhenwei
    Dong, Wei
    Zhang, Bingbing
    Zhang, Jianxin
    [J]. DATA SCIENCE (ICPCSEE 2022), PT I, 2022, 1628 : 326 - 338
  • [6] Neural Network Structure for Spatio-Temporal Long-Term Memory
    Vu Anh Nguyen
    Starzyk, Janusz A.
    Goh, Wooi-Boon
    Jachyra, Daniel
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (06) : 971 - 983
  • [7] Spatio-Temporal Modelling of Long-Term Exposure to Outdoor Black Smoke
    Dadvand, P.
    Rushton, S.
    Rankin, J.
    Pless-Mulloli, T.
    [J]. EPIDEMIOLOGY, 2008, 19 (06) : S140 - S141
  • [8] Spatio-Temporal Memories for Machine Learning: A Long-Term Memory Organization
    Starzyk, Janusz A.
    He, Haibo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (05): : 768 - 780
  • [9] Imaging spatio-temporal patterns of long-term potentiation in mouse hippocampus
    Hosokawa, T
    Ohta, M
    Saito, T
    Fine, A
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 2003, 358 (1432) : 689 - 693
  • [10] Assessment of long-term spatio-temporal radiofrequency electromagnetic field exposure
    Aerts, Sam
    Wiart, Joe
    Martens, Luc
    Joseph, Wout
    [J]. ENVIRONMENTAL RESEARCH, 2018, 161 : 136 - 143