Contactless density measurement of high-temperature BiFeO3 and BaTiO3

被引:19
|
作者
Paradis, PF [1 ]
Yu, J [1 ]
Ishikawa, T [1 ]
Aoyama, T [1 ]
Yoda, S [1 ]
机构
[1] Natl Space Dev Agcy Japan, Tsukuba, Ibaraki 3058505, Japan
来源
关键词
D O I
10.1007/s00339-003-2133-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The density of liquid and undercooled BiFeO3 and high-temperature solid, liquid, and undercooled BaTiO3 was measured with an electrostatic levitation furnace. The density was obtained with an ultraviolet-based imaging technique that allowed excellent sample contrast throughout all phases of processing, including at elevated temperatures. Over the 1250- to 1490-K temperature range, the density of liquid BiFeO3 can be expressed as rho(L)(T)=6.70x10(3)-1.31 (T-T-m) (kg m(-3)) (+/-2 per cent) with T-m=1423 K, yielding a volume coefficient of thermal expansion alpha(L)(T)=1.9x10(-4) K-1. For BaTiO3, the density of the solid can be expressed as rho(S)(T)=5.04x10(3)-0.21 (T-T-m) (T=1893 K) over the 1220- to 1893-K range, yielding a volume coefficient of thermal expansion alpha(S) (T)=4.2x10(-5) K-1, whereas that of the liquid can be expressed as rho(L)(T)=4.04x10(3)-0.34 (T-T-m) over the 1300- to 2025-K range with alpha(L)(T)=8.4x10(-5) K-1.
引用
收藏
页码:1965 / 1969
页数:5
相关论文
共 50 条
  • [1] Contactless density measurement of high-temperature BiFeO3 and BaTiO3
    P.-F. Paradis
    J. Yu
    T. Ishikawa
    T. Aoyama
    S. Yoda
    [J]. Applied Physics A, 2004, 79 : 1965 - 1969
  • [2] Local Structure Analysis of BaTiO3 and BiFeO3 in the High-temperature Cubic Phase
    Yoneda, Yasuhiro
    Kohara, Shinji
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 55 (02) : 741 - 745
  • [3] Optimization of calcination temperature of lead-free BiFeO3–BaTiO3 high-temperature piezoceramics
    Park, Kyu-Hyun
    Lee, Gyoung-Ja
    Bu, Sang-Don
    Lee, Min-Ku
    [J]. Current Applied Physics, 2022, 44 : 76 - 84
  • [4] Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3–BaTiO3 piezoelectric ceramics
    Changrong Zhou
    Huabin Yang
    Qin Zhou
    Guohua Chen
    Weizhou Li
    Hua Wang
    [J]. Journal of Materials Science: Materials in Electronics, 2013, 24 : 1685 - 1689
  • [5] Conductive property of BiFeO3–BaTiO3 ferroelectric ceramics with high Curie temperature
    Zeng, Fangfang
    Fan, Guifen
    Hao, Mengmeng
    Wang, Yanjiong
    Wen, Yue
    Chen, Xin
    Zhang, Jianjia
    Lu, Wenzhong
    [J]. Journal of Alloys and Compounds, 2020, 831
  • [6] Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 high-temperature ceramics
    Zhenyong Cen
    Changrong Zhou
    Huabin Yang
    Qin Zhou
    Weizhou Li
    Changlai Yuan
    [J]. Journal of Materials Science: Materials in Electronics, 2013, 24 : 3952 - 3957
  • [7] Magnetoelectric coupling and phase transition in BiFeO3 and (BiFeO3)0.95(BaTiO3)0.05 ceramics
    Wang, T. -H.
    Tu, C. -S.
    Chen, H. -Y.
    Ding, Y.
    Lin, T. C.
    Yao, Y. -D.
    Schmidt, V. H.
    Wu, K. -T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (04)
  • [8] Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors
    Hou, Ya-Fei
    Li, Wei-Li
    Zhang, Tian-Dong
    Yu, Yang
    Han, Ren-Lu
    Fei, Wei-Dong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (34) : 22354 - 22360
  • [9] Temperature stability of sodium-doped BiFeO3–BaTiO3 piezoelectric ceramics
    Qiaolan Fan
    Changrong Zhou
    Qinglin Li
    Jiwen Xu
    Changlai Yuan
    Guohua Chen
    [J]. Journal of Materials Science: Materials in Electronics, 2015, 26 : 9336 - 9341
  • [10] Fabrication and Ferroelectric Properties of BiFeO3/BaTiO3 Heterostructures
    Aleszkiewicz, M.
    Dybko, K.
    Dynowska, E.
    Dluzewski, P.
    Przyslupski, P.
    [J]. ACTA PHYSICA POLONICA A, 2016, 130 (02) : 511 - 515