A latent topic model with Markov transition for process data

被引:11
|
作者
Xu, Haochen [1 ]
Fang, Guanhua [2 ]
Ying, Zhiliang [2 ]
机构
[1] Fudan Univ, Room 1904,East Guanghua Main Bldg,220 Handan Rd, Shanghai 200433, Peoples R China
[2] Columbia Univ, New York, NY USA
基金
美国国家科学基金会;
关键词
process data; hierarchical Bayesian; hidden Markov model; variational EM; PISA; 2012;
D O I
10.1111/bmsp.12197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a latent topic model with a Markov transition for process data, which consists of time-stamped events recorded in a log file. Such data are becoming more widely available in computer-based educational assessment with complex problem-solving items. The proposed model can be viewed as an extension of the hierarchical Bayesian topic model with a hidden Markov structure to accommodate the underlying evolution of an examinee's latent state. Using topic transition probabilities along with response times enables us to capture examinees' learning trajectories, making clustering/classification more efficient. A forward-backward variational expectation-maximization (FB-VEM) algorithm is developed to tackle the challenging computational problem. Useful theoretical properties are established under certain asymptotic regimes. The proposed method is applied to a complex problem-solving item in the 2012 version of the Programme for International Student Assessment (PISA).
引用
收藏
页码:474 / 505
页数:32
相关论文
共 50 条
  • [1] A Latent Hidden Markov Model for Process Data
    Xueying Tang
    [J]. Psychometrika, 2024, 89 : 205 - 240
  • [2] A Latent Hidden Markov Model for Process Data
    Tang, Xueying
    [J]. PSYCHOMETRIKA, 2024, 89 (01) : 205 - 240
  • [3] Transmission of pneumococcal carriage in families: A latent Markov process model for binary longitudinal data
    Auranen, K
    Arjas, E
    Leino, T
    Takala, AK
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) : 1044 - 1053
  • [4] Latent Space Model for Process Data
    Chen, Yi
    Zhang, Jingru
    Yang, Yi
    Lee, Young-Sun
    [J]. JOURNAL OF EDUCATIONAL MEASUREMENT, 2022, 59 (04) : 517 - 535
  • [5] Exploring latent states of problem-solving competence using hidden Markov model on process data
    Xiao, Yue
    He, Qiwei
    Veldkamp, Bernard
    Liu, Hongyun
    [J]. JOURNAL OF COMPUTER ASSISTED LEARNING, 2021, 37 (05) : 1232 - 1247
  • [6] A Latent Topic Model for Linked Documents
    Guo, Zhen
    Zhu, Shenghuo
    Chi, Yun
    Zhang, Zhongfei
    Gong, Yihong
    [J]. PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2009, : 720 - 721
  • [7] Latent topic model for audio retrieval
    Hu, Pengfei
    Liu, Wenju
    Jiang, Wei
    Yang, Zhanlei
    [J]. PATTERN RECOGNITION, 2014, 47 (03) : 1138 - 1143
  • [8] Bayesian Latent Topic Clustering Model
    Wu, Meng-Sung
    Chien, Jen-Tzung
    [J]. INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 2162 - 2165
  • [9] Latent Markov Latent Trait Analysis for Exploring Measurement Model Changes in Intensive Longitudinal Data
    Vogelsmeier, Leonie V. D. E.
    Vermunt, Jeroen K.
    Keijsers, Loes
    De Roover, Kim
    [J]. EVALUATION & THE HEALTH PROFESSIONS, 2021, 44 (01) : 61 - 76
  • [10] A Latent Class Model with Hidden Markov Dependence for Array CGH Data
    DeSantis, Stacia M.
    Houseman, E. Andres
    Coull, Brent A.
    Louis, David N.
    Mohapatra, Gayatry
    Betensky, Rebecca A.
    [J]. BIOMETRICS, 2009, 65 (04) : 1296 - 1305