Examining Bitcoin mempools Resemblance Using Jaccard Similarity Index

被引:0
|
作者
Dae-Yong, Kim [1 ]
Meryam, Essaid [1 ]
Hongtaek, Ju [1 ]
机构
[1] Keimyung Univ, Comp Engn, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
blockchain; Bitcoin; mempool; transaction;
D O I
10.23919/apnoms50412.2020.9237033
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In Bitcoin, memory pool is a space of unconfirmed transactions. when a node receives newly generated transactions, the node verifies it and appends it into the local mempool. The transactions are stored in the mempool until they get included in a newly mined block. Since each node has a different capacity for storing unconfirmed transactions; thus, each node has different transactions stored in mempool. In this paper, we examine the mempool similarity using the Jaccard Index among four Bitcoin full nodes.
引用
收藏
页码:287 / 290
页数:4
相关论文
共 50 条
  • [1] DISTRIBUTIONAL PROPERTIES OF JACCARD INDEX OF SIMILARITY
    MCCORMICK, WP
    LYONS, NI
    HUTCHESON, K
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (01) : 51 - 68
  • [2] The probabilistic basis of Jaccard's index of similarity
    Real, R
    Vargas, JM
    [J]. SYSTEMATIC BIOLOGY, 1996, 45 (03) : 380 - 385
  • [3] Enhancing Accuracy of Topic Sensitive PageRank using Jaccard Index and Cosine Similarity
    Rezvani, Mojtaba
    Hashemi, S. Mehdi
    [J]. 2012 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2012), VOL 1, 2012, : 620 - 624
  • [4] Evaluating single-cell cluster stability using the Jaccard similarity index
    Tang, Ming
    Kaymaz, Yasin
    Logeman, Brandon L.
    Eichhorn, Stephen
    Liang, Zhengzheng S.
    Dulac, Catherine
    Sackton, Timothy B.
    [J]. BIOINFORMATICS, 2021, 37 (15) : 2212 - 2214
  • [5] Improving Jaccard Index for Measuring Similarity in Collaborative Filtering
    Lee, Soojung
    [J]. INFORMATION SCIENCE AND APPLICATIONS 2017, ICISA 2017, 2017, 424 : 799 - 806
  • [6] On the Jaccard Index Similarity Measure in Ranking Fuzzy Numbers
    Ramli, Nazirah
    Mohamad, Daud
    [J]. MATEMATIKA, 2009, 25 (02): : 157 - 165
  • [7] Android Malware Similarity Clustering using Method based Opcode Sequence and Jaccard Index
    Lee, Shinho
    Jung, Wookhyun
    Kim, Sangwon
    Kim, Eui Tak
    [J]. 2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC): ICT CONVERGENCE LEADING THE AUTONOMOUS FUTURE, 2019, : 178 - 183
  • [8] New Similarity Measures Between Generalized Trapezoidal Fuzzy Numbers Using the Jaccard Index
    Hwang, Chao-Ming
    Yang, Miin-Shen
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2014, 22 (06) : 831 - 844
  • [9] An improved asymptotic test for the Jaccard similarity index for binary data
    Koeneman, Scott H. H.
    Cavanaugh, Joseph E. E.
    [J]. STATISTICS & PROBABILITY LETTERS, 2022, 184
  • [10] The Document Similarity Index based on the Jaccard Distance for Mail Filtering
    Temma, Seiya
    Sugii, Manabu
    Matsuno, Hiroshi
    [J]. 2019 34TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2019), 2019, : 221 - 224