A fixed point theorem for the infinite-dimensional simplex

被引:0
|
作者
Rizzolo, Douglas
Su, Francis Edward [1 ]
机构
[1] Harvey Mudd Coll, Claremont, CA 91711 USA
[2] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
基金
美国国家科学基金会;
关键词
Schauder fixed point theorem; Brouwer fixed point theorem; Spemer's lemma; infinite-dimensional simplex;
D O I
10.1016/j.jmaa.2006.10.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the infinite-dimensional simplex to be the closure of the convex hull of the standard basis vectors in R-infinity, and prove that this space has the fixed point property: any continuous function from the space into itself has a fixed point. Our proof is constructive, in the sense that it can be used to find an approximate fixed point; the proof relies on elementary analysis and Sperner's lemma. The fixed point theorem is shown to imply Schauder's fixed point theorem on infinite-dimensional compact convex subsets of normed spaces. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1063 / 1070
页数:8
相关论文
共 50 条