Si-Based 94-GHz Phased Array Transmit and Receive Modules for Real-Time 3D Radar Imaging

被引:6
|
作者
Plouchart, Jean-Olivier [1 ]
Gu, Xiaoxiong [1 ]
Lee, Wooram [1 ]
Tzadok, Asaf [1 ]
Liu, Duixian [1 ]
Liu, Huijian [1 ]
Yeck, Mark [1 ]
Baks, Christian [1 ]
Valdes-Garcia, Alberto [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
Phased array; millimeter-wave imaging; W-band;
D O I
10.1109/mwsym.2019.8701092
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compact phased array transmitter (TX) and receiver (RX) modules operating at 94 GHz are presented and demonstrated in a 3D radar imaging system. Each module consists of four SiGe ICs and a package that integrates 8X8 dual-polarized antennas and 10-GHz IF power combiners. Each TX and RX IC integrates beam-forming, frequency conversion, LO generation, and digital control functions. The modules have beam steering capabilities in both azimuth and elevation over a range of +/- 32 degrees. A radar imaging system is implemented comprising an evaluation board with one TX module and one RX module, FMCW signal generation and acquisition components, and an FPGA for fast beam steering control. The system can steer TX and RX beams to a given direction and perform a radar measurement in that direction in less than 100us, enabling 3D imaging in real time. Measurement results are presented for the modules and the prototype imaging system.
引用
收藏
页码:532 / 535
页数:4
相关论文
共 50 条
  • [1] Real-Time Optronic Beamformer on Receive in Phased Array Radar
    Liu, Lei
    Gao, Yesheng
    Wang, Fang
    Liu, Xingzhao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (03) : 387 - 391
  • [2] 3D volumetric radar using 94-GHz millimeter waves
    Takacs, Barnabas
    [J]. Enhanced and Synthetic Vision 2006, 2006, 6226 : 22601 - 22601
  • [3] A 94GHz real aperture 3D imaging radar
    Macfarlane, David G.
    Robertson, Duncan A.
    [J]. 2006 EUROPEAN RADAR CONFERENCE, 2006, : 154 - +
  • [4] INDUSTRIAL APPLICATION OF REAL-TIME 3D IMAGING BY SAMPLING PHASED ARRAY
    Bulavinov, Andrey
    Pinchuk, Roman
    Pudovikov, Sergey
    Reddy, Krishna Mohan
    Walte, Friedheim
    [J]. 10TH EUROPEAN CONFERENCE ON NON-DESTRUCTIVE TESTING 2010 (ECNDT), VOLS 1-5, 2010, : 532 - 540
  • [5] Real time 3D imaging system based on sparse MIMO array at 340 GHz
    Cui Zhen-Mao
    Gao Jing-Kun
    Lu Bin
    Chen Peng
    He Yue
    Qin Yu-Liang
    Cheng Bin-Bin
    Liu Qiao
    He Xiao-Yang
    Deng Bin
    Deng Xian-Jin
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2017, 36 (01) : 102 - 106
  • [6] Real-time 3D visualization of phased array weather radar data via concurrent processing in Science Cloud
    National Institute of Information and Communications Technology, Tokyo, Japan
    不详
    不详
    不详
    不详
    不详
    [J]. IEEE Annu. Inf. Technol., Electron. Mob. Commun. Conf., IEEE IEMCON,
  • [7] Real-time 3D Visualization of Phased Array Weather Radar Data via Concurrent Processing in Science Cloud
    Murata, Ken T.
    Muranaga, Kazuya
    Yamamoto, Kazunori
    Nagaya, Yoshiaki
    Pavarangkoon, Praphan
    Satoh, Shinsuke
    Mizuhara, Takamichi
    Kimura, Eizen
    Tatebe, Osamu
    Tanaka, Masahiro
    Kawahara, Shintaro
    [J]. 7TH IEEE ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE IEEE IEMCON-2016, 2016,
  • [8] Real-Time Indoor 3D Human Imaging Based on MIMO Radar Sensing
    Guo, Hanqing
    Zhang, Nan
    Shi, Wenjun
    AlQarni, Saeed
    Wu, Shaoen
    Wang, Honggang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1408 - 1413
  • [9] Crossed-Array Transducer for Real-Time 3D Imaging
    Joyce, Andrew W.
    Lockwood, Geoffrey R.
    [J]. 2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2014, : 2116 - 2120
  • [10] Real-Time 2-D Phased Array Vector Flow Imaging
    Holbek, Simon
    Hansen, Kristoffer Lindskov
    Fogh, Nikolaj
    Moshavegh, Ramin
    Olesen, Jacob Bjerring
    Nielsen, Michael Bachmann
    Jensen, Jorgen Arendt
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (07) : 1205 - 1213