Big biomedical data as the key resource for discovery science

被引:50
|
作者
Toga, Arthur W. [1 ]
Foster, Ian [2 ,3 ]
Kesselman, Carl [4 ]
Madduri, Ravi [2 ,3 ]
Chard, Kyle [2 ,3 ]
Deutsch, Eric W. [5 ]
Price, Nathan D. [5 ]
Glusman, Gustavo [5 ]
Heavner, Benjamin D. [5 ]
Dinov, Ivo D. [6 ]
Ames, Joseph [1 ]
Van Horn, John [1 ]
Kramer, Roger [5 ]
Hood, Leroy [5 ]
机构
[1] Univ So Calif, Lab Neuro Imaging, USC Stevens Neuroimaging & Informat Inst, Los Angeles, CA USA
[2] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Chicago, IL USA
[4] Univ So Calif, Inst Informat Sci, Los Angeles, CA USA
[5] Inst Syst Biol, Seattle, WA USA
[6] Univ Michigan, SOCR, UMSN, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
big; biomedical; data; resource; discovery; science; neuroscience (ja); big data; analytics; BD2K; discovery science; Parkinson's disease; Alzheimer's disease (ID); STATISTICAL-MODEL; VISUALIZATION;
D O I
10.1093/jamia/ocv077
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's.
引用
收藏
页码:1126 / 1131
页数:6
相关论文
共 50 条
  • [1] Big science, big data, and a big role for biomedical informatics
    Ohno-Machado, Lucila
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2012, 19 (E1) : E1 - E1
  • [2] Knowledge Discovery Using Big Data in Biomedical Systems
    Janga, Sarath Chandra
    Zhu, Dongxiao
    Chen, Jake Y.
    Zaki, Mohammed J.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (04) : 726 - 728
  • [3] Drug Target Path Discovery on Semantic Biomedical Big Data
    Du, Fang
    Li, Ting
    Shi, Yingjie
    Song, Lijuan
    Gu, Xiaojun
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 3381 - 3386
  • [4] The center for causal discovery of biomedical knowledge from big data
    Cooper, Gregory F.
    Bahar, Ivet
    Becich, Michael J.
    Benos, Panayiotis V.
    Berg, Jeremy
    Espino, Jeremy U.
    Glymour, Clark
    Jacobson, Rebecca Crowley
    Kienholz, Michelle
    Lee, Adrian V.
    Lu, Xinghua
    Scheines, Richard
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2015, 22 (06) : 1132 - 1136
  • [5] Biomedical Resource Discovery Considering Semantic Heterogeneity in Data Grid Environments
    Ketata, Imen
    Mokadem, Riad
    Morvan, Franck
    [J]. INTEGRATED COMPUTING TECHNOLOGY, 2011, 165 : 12 - 24
  • [6] Knowledge Discovery from Big Social Key-Value Data
    Leung, Carson K.
    Braun, Peter
    Enkhee, Murun
    Pazdor, Adam G. M.
    Sarumi, Oluwafemi A.
    Tran, Kimberly
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2016, : 484 - 491
  • [7] The discovery value of "big science"
    Esparza, Jose
    Yamada, Tadataka
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2007, 204 (04): : 701 - 704
  • [8] Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research
    Purawat, Shweta
    Cowart, Charles
    Amaro, Rommie E.
    Altintas, Ilkay
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 1791 - 1800
  • [9] THE QUANTIFIED SELF: Fundamental Disruption in Big Data Science and Biological Discovery
    Swan, Melanie
    [J]. BIG DATA, 2013, 1 (02) : 85 - 99
  • [10] Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research
    Purawat, Shweta
    Cowart, Charles
    Amaro, Rommie E.
    Altintas, Ilkay
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 20 : 205 - 214