Assessment of Model-Plant Mismatch by the Nominal Sensitivity Function for Unconstrained MPC

被引:5
|
作者
Botelho, Viviane Rodrigues [1 ]
Trierweiler, Jorge Otavio [1 ]
Farenzena, Marcelo [1 ]
Duraiski, Ricardo [2 ]
机构
[1] Univ Fed Rio Grande do Sul, GIMSCOP Grp Intensificat Modeling Simulat Control, Dept Chem Engn, R Engn Luis Englert S-N,Campus Cent, BR-90040040 Porto Alegre, RS, Brazil
[2] Trisolut Engn Solut LTDA, BR-90010080 Porto Alegre, RS, Brazil
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 08期
关键词
Model Predictive Control; Model Plant Mismatch; Sensitivity Function; Control Performance Assessment;
D O I
10.1016/j.ifacol.2015.09.059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model Predictive Control (MPC) is a class of control systems which use a dynamic process model to predict the best future control actions based on past information. Thus, a representative process model is a key factor for its correct performance. Therefore, the investigation of model-plant-mismatch effect is very important issue for MPC performance assessment, monitoring, and diagnosis. This paper presents a method for model quality evaluation based on the investigation of closed-loop data and the nominal complementary sensitivity function. The proposed approach ensures that the MPC tuning is taken into account in the evaluation of the model quality. A SISO case study is analyzed and the results show the effectiveness of the method. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd All rights reserved.
引用
收藏
页码:753 / 758
页数:6
相关论文
共 50 条
  • [1] Performance Diagnosis of MPC with Model-Plant Mismatch
    Wang, Yuhong
    Wang, Xuejian
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 78 - 82
  • [2] Detection of model-plant mismatch in MPC applications
    Badwe, Abhijit S.
    Gudi, Ravindra D.
    Patwardhan, Rohit S.
    Shah, Sirish L.
    Patwardhan, Sachin C.
    JOURNAL OF PROCESS CONTROL, 2009, 19 (08) : 1305 - 1313
  • [3] Plant-model mismatch evaluation for unconstrained MPC with state estimation
    Simkoff, Jodie M.
    Wang, Siyun
    Baldea, Michael
    Chiang, Leo H.
    Castillo, Ivan
    Bindlish, Rahul
    Stanley, David B.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [4] Structures' Influence on Model-Plant Mismatch Detection Methods in MPC Using Partial Correlation
    Loeff, Marcos V.
    Kuramoto, Andre S. R.
    Garcia, Claudio
    CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL, 2015, 321 : 61 - 70
  • [5] Plant-model mismatch estimation in unconstrained state-space MPC
    Simkoff, Jodie M.
    Wang, Siyun
    Baldea, Michael
    Chiang, Leo H.
    Castillo, Ivan
    Bindlish, Rahul
    Stanley, David B.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 3078 - 3083
  • [6] CONTROLLER DESIGNS FOR MODEL-PLANT PARAMETER MISMATCH
    ROMAGNOLI, JA
    KARIM, MN
    AGAMENNONI, OE
    DESAGES, A
    IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1988, 135 (02): : 157 - 164
  • [7] Impact of Model-Plant Mismatch to Minimum Variance Benchmark in Control Performance Assessment
    Chen, Ming
    Xie, Lei
    Su, Hongye
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 2252 - 2257
  • [8] Sensitivity of MIMO Controller Performance to Model-Plant Mismatch, with Applications to Paper Machine Control
    Yousefi, M.
    Forbes, M. G.
    Gopaluni, R. B.
    Loewen, P. D.
    Dumont, G. A.
    Backstrom, J.
    2014 IEEE CONFERENCE ON CONTROL APPLICATIONS (CCA), 2014, : 204 - 209
  • [9] Sensitivity of Controller Performance Indices to Model-Plant Mismatch: An application to Paper Machine Control
    Yousefi, M.
    Forbes, M. G.
    Gopaluni, R. B.
    Dumont, G. A.
    Backstrom, J.
    Malhotra, A.
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 3506 - 3511
  • [10] Model-Plant Mismatch Compensation Using Reinforcement Learning
    Koryakovskiy, Ivan
    Kudruss, Manuel
    Vallery, Heike
    Babuska, Robert
    Caarls, Wouter
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (03): : 2471 - 2477