STRONG CONVERGENCE THEOREMS BY HYBRID METHODS FOR GENERIC SKEW 2-GENERALIZED NONSPREADING MAPPINGS IN BANACH SPACES

被引:0
|
作者
Takahashi, Wataru [1 ,2 ,3 ]
机构
[1] China Med Univ, China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, Taiwan
[2] Keio Univ, Keio Res & Educ Ctr Nat Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[3] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
关键词
Fixed point; skew-generalized nonspreading mapping; hybrid method; shrinking projection method; FIXED-POINT THEOREMS; MAXIMAL MONOTONE-OPERATORS; PROXIMAL-TYPE ALGORITHM; NONLINEAR MAPPINGS; NONEXPANSIVE-MAPPINGS; ASYMPTOTIC-BEHAVIOR; SEMIGROUPS; WEAK;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the hybrid method defined by Nakajo and Takahashi [19], we first obtain a strong convergence theorem for two noncommutative generic skew 2-generalized nonspreading mappings in a Banach space. Next, using the shrinking projection method defined by Takahashi, Takeuchi and Kubota [26], we prove another strong convergence theorem for the mappings in a Banach space. Using these results, we get well-known and new strong convergence theorems by the hybrid method and the shrinking projection method in a Hilbert space and a Banach space.
引用
收藏
页码:2425 / 2446
页数:22
相关论文
共 50 条