Quantification of anti-aggregation activity of chaperones

被引:29
|
作者
Kurganov, Boris I. [1 ]
机构
[1] Russian Acad Sci, Res Ctr Biotechnol, Bach Inst Biochem, Leninsky Pr 33, Moscow 119071, Russia
基金
俄罗斯科学基金会;
关键词
Aggregation kinetics; Molecular chaperones; Chemical chaperones; ALPHA-B-CRYSTALLIN; GLYCOGEN-PHOSPHORYLASE-B; HEAT-SHOCK PROTEINS; DITHIOTHREITOL-INDUCED AGGREGATION; THERMAL AGGREGATION; SUBUNIT EXCHANGE; SKELETAL-MUSCLE; A-CRYSTALLIN; CHEMICAL CHAPERONES; FIBRIL FORMATION;
D O I
10.1016/j.ijbiomac.2016.07.066
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anti-aggregation potential of the cell is determined by chaperones of a proteinaceous nature (mainly by small heat shock proteins) and low-molecular-weight chemical chaperones. To characterize the anti-aggregation activity of chaperones in vitro, appropriate test systems based, for example, on thermal or dithiothreitol-induced aggregation of model proteins can be used. Aggregation assays usually follow increment in the light scattering intensity or apparent optical absorbance. The initial parts of the dependences of the light scattering intensity (I) on time (t) can be described by quadratic equation: I=[K-LS(t - t(0))](2), where Kis is a parameter characterizing the initial rate of aggregation and to is the duration of lag phase. Based on the dependence of K-LS on the initial concentration of the protein [P](0), the power coefficient a in the equation K-LS = const[P](0)(a) mg is determined. The (K-LS/K-LS,K-0)(1/a) versus chaperone concentration plot is used for analysis of the protective action of chaperones. The anti-aggregation activity of protein chaperones is expressed as an adsorption capacity of the chaperone with respect to target protein. The anti-aggregation activity of chemical chaperones is expressed as a semi-saturation concentration of the chaperone, i.e., the concentration of chaperone at which (K-LS/K-LS,K-0)(1/a) = 0.5. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:104 / 117
页数:14
相关论文
共 50 条
  • [1] Quantification of Anti-Aggregation Activity of Chaperones: A Test-System Based on Dithiothreitol-Induced Aggregation of Bovine Serum Albumin
    Borzova, Vera A.
    Markossian, Kira A.
    Kara, Dmitriy A.
    Chebotareva, Natalia A.
    Makeeva, Valentina F.
    Poliansky, Nikolay B.
    Muranov, Konstantin O.
    Kurganov, Boris I.
    [J]. PLOS ONE, 2013, 8 (09):
  • [2] Quantification of anti-aggregation activity of UV-irradiated α-crystallin
    Borzova, Vera A.
    Markossian, Kira A.
    Muranov, Konstantin O.
    Polyansky, Nikolay B.
    Kleymenov, Sergey Yu.
    Kurganov, Boris I.
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2015, 73 : 84 - 91
  • [3] An Investigation of Platelet Anti-aggregation Activity in Indigenous Medicinal Herbs
    Waqar, Muhammad Anwar
    Mahmood, Yasir
    Saleem, Asma
    Saeed, Sheikh Arshad
    [J]. JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2009, 31 (02): : 324 - 328
  • [4] RETHINKING ANTI-AGGREGATION DOCTRINE
    Noll, David L.
    [J]. NOTRE DAME LAW REVIEW, 2012, 88 (02) : 649 - 696
  • [5] Sequential dominance and the anti-aggregation principle
    Johan E. Gustafsson
    [J]. Philosophical Studies, 2015, 172 : 1593 - 1601
  • [6] Double anti-aggregation: how long?
    不详
    [J]. EXERCER-LA REVUE FRANCOPHONE DE MEDECINE GENERALE, 2018, (147): : 432 - 432
  • [7] Sequential dominance and the anti-aggregation principle
    Gustafsson, Johan E.
    [J]. PHILOSOPHICAL STUDIES, 2015, 172 (06) : 1593 - 1601
  • [8] Anti-aggregation activity of small heat shock proteins under crowded conditions
    Roman, Svetlana G.
    Chebotareva, Natalia A.
    Kurganov, Boris I.
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 100 : 97 - 103
  • [9] Intramural esophageal hematoma and platelet anti-aggregation
    Gutierrez Cortizo, E. N.
    Merelo Ruiz, B.
    Romero Jimenez, M. J.
    Leon Jimenez, D.
    [J]. REVISTA CLINICA ESPANOLA, 2013, 213 (08): : 417 - 418
  • [10] Effect of Trehalose on Oligomeric State and Anti-Aggregation Activity of αB-Crystallin
    Natalia A. Chebotareva
    Tatiana B. Eronina
    Valeriya V. Mikhaylova
    Svetlana G. Roman
    Kristina V. Tugaeva
    Boris I. Kurganov
    [J]. Biochemistry (Moscow), 2022, 87 : 121 - 130