Effective extrusion-based 3D printing system design for cementitious-based materials

被引:71
|
作者
Albar, Abdulrahman [1 ]
Chougan, Mehdi [2 ]
Al-Kheetan, Mazen J. [3 ]
Swash, Mohammad Rafiq [2 ]
Ghaffar, Seyed Hamidreza [2 ]
机构
[1] Brunel Univ London, Dept Elect & Elect Engn, Uxbridge, Middx, England
[2] Brunel Univ London, Dept Civil & Environm Engn, Uxbridge, Middx, England
[3] Mutah Univ, Civil & Environm Engn Dept, Coll Engn, POB 7, Mutah, Karak, Jordan
关键词
3D printing; Extrusion based system; Geopolymers; CONSTRUCTION; GEOPOLYMER; ASH;
D O I
10.1016/j.rineng.2020.100135
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The widespread popularity of additive manufacturing in most industries ranging from biomedical to aerospace suggests a transformation in manufacturing, which has recently also emerged in the construction sector. This paper presents an active system for the extrusion-based 3D printing of cementitious materials. The system can be extended to other materials and scaled up with slight hardware modifications. The proposed system uses an unconventional yet simplistic approach to generate a consistent output of material throughout the printing process. The effectiveness of the extruder is demonstrated through an extensive printing and testing of various cementitious-based materials. The printing and material parameters, which are essential for high mechanical strength printed object were investigated and optimized through a logical iterative loop of trials. The results showed the shape retention of 3D printed objects using the proposed design of extrusion-based system in conjunction with optimized rheology of cementitious-based materials was encouraging for larger scale 3D printing.
引用
收藏
页数:9
相关论文
共 50 条
  • [2] Extrusion-based 3D printing of soft active materials
    Zhao, Jiayu
    Li, Xiao
    Ji, Donghwan
    Bae, Jinhye
    [J]. CHEMICAL COMMUNICATIONS, 2024, 60 (58) : 7414 - 7426
  • [3] Extrusion-based 3D food printing - Materials and machines
    Tan, Cavin
    Toh, Wei Yan
    Wong, Gladys
    Li, Lin
    [J]. INTERNATIONAL JOURNAL OF BIOPRINTING, 2018, 4 (02)
  • [4] A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing
    Chen, Yu
    He, Shan
    Gan, Yidong
    Copuroglu, Oguzhan
    Veer, Fred
    Schlangen, Erik
    [J]. JOURNAL OF BUILDING ENGINEERING, 2022, 45
  • [5] 3D food printing: Applications of plant-based materials in extrusion-based food printing
    Wang, Mingshuang
    Li, Dongnan
    Zang, Zhihuan
    Sun, Xiyun
    Tan, Hui
    Si, Xu
    Tian, Jinlong
    Teng, Wei
    Wang, Jiaxin
    Liang, Qi
    Bao, Yiwen
    Li, Bin
    Liu, Ruihai
    [J]. CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2022, 62 (26) : 7184 - 7198
  • [6] Extrusion-based 3D printing of ceramic components
    Faes, M.
    Valkenaers, H.
    Vogeler, F.
    Vleugels, J.
    Ferraris, E.
    [J]. 3RD CIRP GLOBAL WEB CONFERENCE - PRODUCTION ENGINEERING RESEARCH ADVANCEMENT BEYOND STATE OF THE ART (CIRPE2014), 2015, 28 : 76 - 81
  • [7] Extrusion-Based 3D Printing for Highly Porous Alginate Materials Production
    Menshutina, Natalia
    Abramov, Andrey
    Tsygankov, Pavel
    Lovskaya, Daria
    [J]. GELS, 2021, 7 (03)
  • [8] Mechanical properties of engineered cementitious composites beams fabricated by extrusion-based 3D printing
    Zhu, Binrong
    Pan, Jinlong
    Zhou, Zhenxin
    Cai, Jingming
    [J]. ENGINEERING STRUCTURES, 2021, 238
  • [9] EXTRUSION-BASED 3D PRINTING OF PORCELAIN: FEASIBLE REGIONS
    Bhardwaj, Abhinav
    Kalantar, Negar
    Molina, Elmer
    Zou, Na
    Pei, Zhijian
    [J]. PROCEEDINGS OF THE ASME 14TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2019, VOL 1, 2019,
  • [10] Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks
    Garcia-Garcia, Ane
    Perez-Alvarez, Leyre
    Ruiz-Rubio, Leire
    Larrea-Sebal, Asier
    Martin, Cesar
    Vilas-Vilela, Jose Luis
    [J]. GELS, 2024, 10 (02)