On plane bipartite graphs without fixed edges

被引:1
|
作者
Salem, Khaled [1 ]
Klavzar, Sandi
机构
[1] George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USA
[2] Univ Maribor, Dept Math & Comp sci, SLO-2000 Maribor, Slovenia
关键词
perfect matching; fixed edge; alternating cycle; plane bipartite graph; polyhex fragment; generalized hexagonal system;
D O I
10.1016/j.aml.2006.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge of a graph H with a perfect matching is a fixed edge if it either belongs to none or to all of the perfect matchings of H. It is shown that a connected plane bipartite graph has no fixed edges if and only if the boundary of every face is an alternating cycle. Moreover, a polyhex fragment has no fixed edges if and only if the boundaries of its infinite face and the non-hexagonal finite faces are alternating cycles. These results extend results on generalized hexagonal systems from [F. Zhang, M. Zheng, Generalized hexagonal systems with each hexagon being resonant, Discrete Appl. Math. 36 (1992) 67-73]. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:813 / 816
页数:4
相关论文
共 50 条
  • [1] Plane Elementary Bipartite Graphs with Forcing or Anti-forcing Edges
    Che, Zhongyuan
    Chen, Zhibo
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 959 - 971
  • [2] Plane Elementary Bipartite Graphs with Forcing or Anti-forcing Edges
    Zhongyuan Che
    Zhibo Chen
    Graphs and Combinatorics, 2019, 35 : 959 - 971
  • [3] Clique immersion in graphs without a fixed bipartite graph
    Liu, Hong
    Wang, Guanghui
    Yang, Donglei
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 157 : 346 - 365
  • [4] Bisimplicial edges in bipartite graphs
    Bomhoff, Matthijs
    Manthey, Bodo
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (12) : 1699 - 1706
  • [5] Covering the edges of bipartite graphs using graphs
    Hochbaum, Dorit S.
    Levin, Asaf
    APPROXIMATION AND ONLINE ALGORITHMS, 2008, 4927 : 116 - +
  • [6] Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs
    Baranskii, V. A.
    Sen'chonok, T. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2023, 29 (01): : 24 - 35
  • [7] Resonance of plane bipartite graphs
    Chen, Jingrong
    Zhang, Heping
    ARS COMBINATORIA, 2007, 85 : 233 - 239
  • [8] Plane elementary bipartite graphs
    Zhang, HP
    Zhang, FJ
    DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) : 291 - 311
  • [9] Bipartite intrinsically knotted graphs with 23 edges
    Kim, Hyoungjun
    Mattman, Thomas
    Oh, Seungsang
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [10] INDEPENDENT EDGES IN BIPARTITE GRAPHS OBTAINED FROM ORIENTATIONS OF GRAPHS
    GIMBEL, JG
    REID, KB
    JOURNAL OF GRAPH THEORY, 1994, 18 (05) : 515 - 533