Integration of concentrated multi-junction solar cells with small-scale organic rankine cycle

被引:14
|
作者
Alamri, Yassir A. [1 ,2 ]
Albaik, Ibrahim [1 ]
Mahmoud, Saad [1 ]
Al-Dadah, Raya [1 ]
Ismail, Mohamed A. [3 ]
机构
[1] Univ Birmingham, Sch Mech Engn, Birmingham B15 2TT, W Midlands, England
[2] Jubail Univ Coll, Royal Commiss Jubail & Yanbu, Mech Engn Dept, Jubail Ind City 31961, Saudi Arabia
[3] King Khalid Univ, Coll Engn, Dept Chem Engn, Abha 61411, Saudi Arabia
关键词
Fresnel lens; Concentrated photovoltaic thermal; Organic rankine cycle; Multi-junction solar cell; Optical efficiency; Uniformity; PERFORMANCE EVALUATION; RENEWABLE ENERGY; COMBINED HEAT; CPV SYSTEM; POWER; OPTIMIZATION; COLLECTORS; SIMULATION; GENERATION; BUILDINGS;
D O I
10.1016/j.enconman.2021.114235
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, concentrated photovoltaic system using multiple (four) multi-junction solar cells with a refractive system for a single point focus Fresnel lens was developed to achieve high performance in terms of optical efficiency, uniformity (Peak average ratio value) and compactness. Geometric concentration ratio, F-number, focal length and height of homogenizer were investigated showing that at Geometric concentration ratio of 400x, F-number of 1.12, focal length of 632.5 mm and height of homogenizer of 50 mm, the concentrated photovoltaic achieves an optical efficiency and Peak average ratio value of 79.6% and 1.52 respectively. Active cooling was simulated in order to ensure effective operation of the multi-junction solar cells (operating temperature < 110 degrees C) and to investigate the potential of exploiting the heat generated in the cells to operate an Organic Rankine Cycle to maximize the overall solar energy conversion efficiency. An Organic Rankine Cycle system with a target 1 kW power output is studied at different operating conditions and working fluid in order to be integrated with the Concentrated Photovoltaic Thermal system. Various configurations for integrating the Concentrated Photovoltaic Thermal units with the Organic Rankine Cycle working at various operating conditions and working fluids were investigated. Results showed that the integrated system with surface area of 16.8 m2, Organic Rankine Cycle system using R245fa can produce 6.17 kW of electricity with overall energy conversion efficiency of 46.57%. The developed system has the potential to provide the required electricity for buildings in Saudi Arabia which enjoys abundant solar radiation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Detailed transient assessment of a small-scale concentrated solar power plant based on the organic Rankine cycle
    Marinheiro, Mauricio Mani
    Coraca, Gustavo Moraes
    Cabezas-Gomez, Luben
    Ribatski, Gherhardt
    APPLIED THERMAL ENGINEERING, 2022, 204
  • [2] Organic tandem and multi-junction solar cells
    Hadipour, Afshin
    de Boer, Bert
    Blom, Paul W. M.
    ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (02) : 169 - 181
  • [3] Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant
    Cioccolanti, Luca
    Tascioni, Roberto
    Arteconi, Alessia
    APPLIED ENERGY, 2018, 221 : 464 - 476
  • [4] Review of organic Rankine cycle for small-scale applications
    Rahbar, Kiyarash
    Mahmoud, Saad
    Al-Dadah, Raya K.
    Moazami, Nima
    Mirhadizadeh, Seyed A.
    ENERGY CONVERSION AND MANAGEMENT, 2017, 134 : 135 - 155
  • [5] Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC) System
    Baral, Suresh
    Kim, Dokyun
    Yun, Eunkoo
    Kim, Kyung Chun
    ENTROPY, 2015, 17 (04): : 2039 - 2061
  • [6] Comparative Analysis of Small-Scale Organic Rankine Cycle Systems for Solar Energy Utilisation
    Wang, Ruiqi
    Jiang, Long
    Ma, Zhiwei
    Gonzalez-Diaz, Abigail
    Wang, Yaodong
    Roskilly, Anthony Paul
    ENERGIES, 2019, 12 (05):
  • [7] Design of a small-scale organic Rankine cycle engine used in a solar power plant
    Georges, E.
    Declaye, S.
    Dumont, O.
    Quoilin, S.
    Lemort, V.
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2013, 8 : I34 - I41
  • [8] REVIEW OF EXPANDER SELECTION FOR SMALL-SCALE ORGANIC RANKINE CYCLE
    Saghlatoun, Saeedeh
    Zhuge, Weilin
    Zhang, Yangjun
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING - 2014, VOL 1B: SYMPOSIA, 2014,
  • [9] Construction and dynamic test of a small-scale organic rankine cycle
    Pei, Gang
    Li, Jing
    Li, Yunzhu
    Wang, Dongyue
    Ji, Jie
    ENERGY, 2011, 36 (05) : 3215 - 3223
  • [10] Thermodynamic and economic evaluation of a small-scale organic Rankine cycle integrated with a concentrating solar collector
    Ashouri, Milad
    Astaraei, Fatemeh Razi
    Ghasempour, Roghaye
    Ahmadi, M. H.
    Feidt, Michel
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2017, 12 (01) : 54 - 65