Recent developments of content-based image retrieval (CBIR)

被引:69
|
作者
Li, Xiaoqing [1 ,2 ]
Yang, Jiansheng [1 ,2 ]
Ma, Jinwen [1 ,2 ]
机构
[1] Peking Univ, Sch Math Sci, Dept Informat & Computat Sci, Beijing 100871, Peoples R China
[2] Peking Univ, LMAM, Beijing 100871, Peoples R China
关键词
Content-based image retrieval; Image representation; Database search; Computer vision; Big data; Deep learning; PRODUCT QUANTIZATION; REPRESENTATION; NETWORK;
D O I
10.1016/j.neucom.2020.07.139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the development of Internet technology and the popularity of digital devices, Content-Based Image Retrieval (CBIR) has been quickly developed and applied in various fields related to computer vision and artificial intelligence. Currently, it is possible to retrieve related images effectively and efficiently from a large scale database with an input image. In the past ten years, great efforts have been made for new theories and models of CBIR and many effective CBIR algorithms have been established. In this paper, we present a survey on the fast developments and applications of CBIR theories and algorithms during the period from 2009 to 2019. We mainly review the technological developments from the viewpoint of image representation and database search. We further summarize the practical applications of CBIR in the fields of fashion image retrieval, person re-identification, e-commerce product retrieval, remote sensing image retrieval and trademark image retrieval. Finally, we discuss the future research directions of CBIR with the challenge of big data and the utilization of deep learning techniques.& nbsp; (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [1] Comparative study on Content-Based Image Retrieval (CBIR)
    Khan, Sumaira Muhammad Hayat
    Hussain, Ayyaz
    Alshaikhli, Imad Fakhri Taha
    2012 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE APPLICATIONS AND TECHNOLOGIES (ACSAT), 2012, : 61 - 66
  • [2] Introduction to the special issue on content-based image retrieval (CBIR)
    Zhang, AD
    Zhang, HJ
    MULTIMEDIA SYSTEMS, 2003, 8 (06) : 493 - 494
  • [3] Impact of Feature Selection on the Performance of Content-Based Image Retrieval (CBIR)
    Benloucif, Slimane
    Boucheham, Bachir
    2014 4TH INTERNATIONAL SYMPOSIUM ISKO-MAGHREB: CONCEPTS AND TOOLS FOR KNOWLEDGE MANAGEMENT (ISKO-MAGHREB), 2014,
  • [4] An Efficient Content-Based Image Retrieval (CBIR) Using GLCM for Feature Extraction
    Chandana, P.
    Rao, P. Srinivas
    Satyanarayana, C. H.
    Srinivas, Y.
    Latha, A. Gauthami
    RECENT DEVELOPMENTS IN INTELLIGENT COMPUTING, COMMUNICATION AND DEVICES, ICCD 2016, 2017, 555 : 21 - 30
  • [5] CBIR-ANR: A content-based image retrieval with accuracy noise reduction
    Vieira, Gabriel S.
    Fonseca, Afonso U.
    Soares, Fabrizzio
    SOFTWARE IMPACTS, 2023, 15
  • [6] Introduction to the Special Issue on Content-Based Image Retrieval (CBIR) Guest Editors
    Aidong Zhang
    HongJiang Zhang
    Multimedia Systems, 2003, 8 : 493 - 494
  • [7] Content-based Image Retrieval from Videos using CBIR and ABIR algorithm
    Wankhede, Vrushali A.
    Mohod, Prakash S.
    2015 GLOBAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (GCCT), 2015, : 759 - 763
  • [8] Retrieval and Recognition of faces using Content-Based Image Retrieval (CBIR) and Feature Combination method
    Devi, Ningthoujam Sunita
    Hemachandran, K.
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH, 2016, : 263 - 269
  • [9] Object extract on as a basic process for content-based image retrieval (CBIR) system
    Jaworska, T.
    OPTO-ELECTRONICS REVIEW, 2007, 15 (04) : 184 - 195
  • [10] Content-based image retrieval: A review of recent trends
    Hameed, Ibtihaal M.
    Abdulhussain, Sadiq H.
    Mahmmod, Basheera M.
    COGENT ENGINEERING, 2021, 8 (01):