Transport properties and thermoelectric effects in gated silicene superlattices

被引:17
|
作者
Guzman, E. J. [1 ,2 ]
Navarro, O. [2 ]
Oubram, O. [3 ]
Rodriguez-Vargas, I. [4 ]
机构
[1] Univ Michoacana, Fac Ciencias Fis Matemat, Av Francisco J Mujica S-N Ciudad Univ, Morelia, Michoacan, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Invest Mat, Unidad Morelia, Antigua Carretera Patzcuaro 8701, Morelia 58190, Michoacan, Mexico
[3] Univ Autonoma Estado Morelos, Fac Ciencias Quim & Ingn, Av Univ 1001, Cuernavaca 62209, Morelos, Mexico
[4] Univ Autonoma Zacatecas, Unidad Acad Fis, Calzada Solidaridad Esquina Con Paseo La Bufa S-N, Zacatecas 98060, Zacatecas, Mexico
关键词
THERMAL-CONDUCTIVITY; GRAPHENE; SI;
D O I
10.1063/1.5045479
中图分类号
O59 [应用物理学];
学科分类号
摘要
Low-dimensional thermoelectricity opens the possibility of improving the performance and the efficiency of thermoelectric devices by redistributing the electron density of states through the reduction of dimensionality. In this work, we explore this possibility in silicene by reducing its dimensionality through the periodic arrangement of gated electrodes, the so-called gated silicene superlattices. Silicene electrons were described quantum relativistically. The transmission, conductance, and thermoelectric properties were obtained with the transfer matrix method, the Landauer-Buttiker formalism, and the Cutler-Mott formula, respectively. We find that the redistribution of the density of states together with the intrinsic characteristics of silicene, the local bandgap and the large spin-orbit coupling, contribute to the enhancement of the thermoelectric properties. In particular, the Seebeck coefficient and the power factor reach values of a few mV/K and nW/K-2. These findings in conjunction with the low thermal conductivity of silicene indicate that silicene-based nanostructures could be the basis of more efficient thermoelectric devices. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effects of disorder on the transport and thermoelectric properties of silicene superlattices
    Oubram, O.
    Navarro, O.
    Guzman, E. J.
    Rodriguez-Vargas, I.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 120 (120):
  • [2] Thermoelectric transport in superlattices
    Reinecke, TL
    Broido, DA
    [J]. THERMOELECTRIC MATERIALS - NEW DIRECTIONS AND APPROACHES, 1997, 478 : 161 - 167
  • [3] Thermoelectric transport in superlattices
    Broido, DA
    Reinecke, TL
    [J]. THERMOELECTRIC MATERIALS 1998 - THE NEXT GENERATION MATERIALS FOR SMALL-SCALE REFRIGERATION AND POWER GENERATION APPLICATIONS, 1999, 545 : 485 - 492
  • [4] Disorder effects on the ballistic transport of gated phosphorene superlattices
    Guzman, E. J.
    Oubram, O.
    Navarro, O.
    Rodriguez-Vargas, I
    [J]. PHYSICAL REVIEW B, 2023, 107 (04)
  • [5] Nonlocal transport in Fibonacci superconducting silicene superlattices
    Ma, Shuo
    Zhang, Hongmei
    Liu, Jianjun
    Liu, De
    [J]. PHYSICS LETTERS A, 2022, 451
  • [6] Thermoelectric effects in silicene nanoribbons
    Zberecki, K.
    Wierzbicki, M.
    Barnas, J.
    Swirkowicz, R.
    [J]. PHYSICAL REVIEW B, 2013, 88 (11)
  • [7] Vacancy Effects on Electric and Thermoelectric Properties of Zigzag Silicene Nanoribbons
    An, Rui-Li
    Wang, Xue-Feng
    Vasilopoulos, P.
    Liu, Yu-Shen
    Chen, An-Bang
    Dong, Yao-Jun
    Zhai, Ming-Xing
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (37): : 21339 - 21346
  • [8] Impact of of Phosphorus superlattices on charge and spin dependent transport properties of zigzag silicene nanoribbons
    Sarebanha, Behnaz
    Ahmadi, Somaieh
    Eslami, Leila
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 89 : 139 - 147
  • [9] Analytical study of the thermoelectric properties in silicene
    Amarnath, R.
    Bhargavi, K. S.
    Kubakaddi, S. S.
    [J]. PHYSICA SCRIPTA, 2024, 99 (10)
  • [10] Controllable spin transport in dual-gated silicene
    Wang, Yu
    Lou, Yiyi
    [J]. PHYSICS LETTERS A, 2014, 378 (35) : 2627 - 2631