REGULARIZED LEAST SQUARE KERNEL REGRESSION FOR STREAMING DATA

被引:0
|
作者
Zheng, Xiaoqing [1 ]
Sun, Hongwei [1 ]
Wu, Qiang [2 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
基金
中国国家自然科学基金;
关键词
Learning theory; kernel ridge regression; streaming data; online learning; adaptive underregularization; ALGORITHM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the use of kernel ridge regression (KRR) in the block-wise streaming data. The algorithm works in an online manner: when a new data block comes in, the algorithm computes a local estimator based on the incoming data block and updates the predictive model by weighted average of all local estimators. Assuming the block data sizes increase at a mild rate and the regularization parameters are selected adaptively according to the sample size of all available data at the time of updating the model, we prove the convergence of the average KRR estimator. The rate is optimal when the regression function can be well approximated by the reproducing kernel Hilbert space in the L-2 sense.
引用
收藏
页码:1533 / 1548
页数:16
相关论文
共 50 条
  • [1] Regularized Least Square Regression for Functional Data
    Li, Han
    Cao, Ying
    2012 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2012), 2012, 12 : 166 - 171
  • [2] Error analysis of regularized least-square regression with Fredholm kernel
    Tao, Yanfang
    Yuan, Peipei
    Song, Biqin
    NEUROCOMPUTING, 2017, 249 : 237 - 244
  • [3] Total least square kernel regression
    Luong, Hiep
    Goossens, Bart
    Pizurica, Aleksandra
    Philips, Wilfried
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2012, 23 (01) : 94 - 99
  • [4] Least Square Regularized Regression for Multitask Learning
    Xu, Yong-Li
    Chen, Di-Rong
    Li, Han-Xiong
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [5] Least Square Regularized Regression in Sum Space
    Xu, Yong-Li
    Chen, Di-Rong
    Li, Han-Xiong
    Liu, Lu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (04) : 635 - 646
  • [6] Regularized least square regression with dependent samples
    Hongwei Sun
    Qiang Wu
    Advances in Computational Mathematics, 2010, 32 : 175 - 189
  • [7] Regularized least square regression with dependent samples
    Sun, Hongwei
    Wu, Qiang
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 32 (02) : 175 - 189
  • [8] Regularized Least Square Regression with Unbounded and Dependent Sampling
    Chu, Xiaorong
    Sun, Hongwei
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [9] REGULARIZED LEAST SQUARE REGRESSION WITH SPHERICAL POLYNOMIAL KERNELS
    Li, Luoqing
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2009, 7 (06) : 781 - 801
  • [10] Learning performance of regularized moving least square regression
    Tong, Hongzhi
    Wu, Qiang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 325 : 42 - 55