Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time

被引:0
|
作者
Diks, Krzysztof [1 ]
Stanczyk, Piotr [1 ]
机构
[1] Univ Warsaw, Inst Informat, PL-02097 Warsaw, Poland
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main result of this paper is a new perfect matching algorithm for biconnected cubic graphs. The algorithm runs in time O(n log(2) n). It is also possible, by applying randomized data structures, to get O(n log n log log(3) n) average time. Our solution improves the one given by T. Biedl et al. [3]. The algorithm of Biedl et al. runs in time O(n log(4) n). We use a similar approach. However, thanks to exploring some properties of biconnected cubic graphs we are Ale to replace complex fully-dynamic biconnectivity data structure with much simpler, dynamic graph connectivity and dynamic tree data structures. Moreover, we present a significant modification of the new algorithm which makes application of a decremental dynamic graph connectivity data structure possible, instead of one supporting the fully dynamic graph connectivity. It gives hope for further improvements.
引用
收藏
页码:321 / 333
页数:13
相关论文
共 50 条
  • [1] Shortest Paths in Planar Graphs with Real Lengths in O(n log2 n/log log n) Time
    Mozes, Shay
    Wulff-Nilsen, Christian
    ALGORITHMS-ESA 2010, PT II, 2010, 6347 : 206 - +
  • [2] Online Bipartite Matching with Amortized O(log2 n) Replacements
    Bernstein, Aaron
    Holm, Jacob
    Rotenberg, Eva
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 947 - 959
  • [3] Online Bipartite Matching with Amortized O(log2 n) Replacements
    Bernstein, Aaron
    Holm, Jacob
    Rotenberg, Eva
    JOURNAL OF THE ACM, 2019, 66 (05)
  • [4] PERFECT MATCHINGS IN O(n log n) TIME IN REGULAR BIPARTITE GRAPHS
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    SIAM JOURNAL ON COMPUTING, 2013, 42 (03) : 1392 - 1404
  • [5] Perfect Matchings in O(n log n) Time in Regular Bipartite Graphs
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 39 - 46
  • [6] Minimum Cut in O(m log2 n) Time
    Gawrychowski, Pawel
    Mozes, Shay
    Weimann, Oren
    THEORY OF COMPUTING SYSTEMS, 2024, 68 (04) : 814 - 834
  • [7] Brief Announcement: Population Protocols for Leader Election and Exact Majority with O(log2 n) States and O(log2 n) Convergence Time
    Bilke, Andreas
    Cooper, Colin
    Elsaesser, Robert
    Radzik, Tomasz
    PROCEEDINGS OF THE ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC'17), 2017, : 451 - 453
  • [8] StUSPACE(log n) ⊆ DSPACE(log2 n/log log n)
    Allender, E
    Lange, KJ
    ALGORITHMS AND COMPUTATION, 1996, 1178 : 193 - 202
  • [9] RUSPACE(log n) ⊆ DSPACE(log2 n log log n)
    Allender, E
    Lange, KJ
    THEORY OF COMPUTING SYSTEMS, 1998, 31 (05) : 539 - 550
  • [10] RUSPACE(log n) ⊆ DSPACE(log2 n/log log n)
    Allender, E.
    Lange, K.-J.
    1998, Springer Science and Business Media, LLC (31)