Broadband Achromatic Anomalous Mirror in Near-IR and Visible Frequency Ranges

被引:7
|
作者
Nemilentsau, Andrei [1 ]
Low, Tony [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
来源
ACS PHOTONICS | 2017年 / 4卷 / 07期
关键词
anomalous mirror; gradient metasurface; achromatic reflection; gap plasmons; metal-insulator-metal resonators; METASURFACE PERFECT ABSORBERS; PHASE DISCONTINUITIES; POLARIZATION; REFLECTION; REFLECTARRAY; HOLOGRAMS; LENSES;
D O I
10.1021/acsphotonics.6b00922
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An anomalous achromatic mirror operating in the near-IR and visible frequency ranges was designed using an array of metal-insulator-metal (MIM) resonators. An incident wave interacting with the MIM resonator experiences phase shift that is equal to the optical path traveled by the gap plasmon excited by the wave. A phase gradient along the mirror surface is created through the difference in plasmon optical paths in the resonators of varying lengths. In a frequency region well below the plasma frequency of metal, the phase gradient is a linear function of frequency, and thus the mirror operates in the achromatic regime; that is, the reflection angle does not depend on the radiation frequency. Using silver-air-silver resonators, we predicted that the mirror can steer a normally incident beam to angles as large as 40 degrees with high radiation efficiency (exceeding 98%) and small Joule losses (below 10%). Our study indicates that it is feasible to create an efficient broadband anomalous mirror.
引用
收藏
页码:1646 / 1652
页数:7
相关论文
共 50 条
  • [1] A line of aviation hyperspectrometers in the UV, visible, and near-IR ranges
    Vinogradov, A. N.
    Egorov, V. V.
    Kalinin, A. P.
    Rodionov, A. I.
    Rodionov, I. D.
    JOURNAL OF OPTICAL TECHNOLOGY, 2016, 83 (04) : 237 - 243
  • [2] Mirrors and spectral beamsplitters for lasers in the visible and near-IR ranges
    Kireev, AV
    Malevich, NA
    Yurkevich, II
    JOURNAL OF OPTICAL TECHNOLOGY, 2000, 67 (11) : 1012 - 1013
  • [3] Radiation limitation in the visible and near-IR ranges by calcium fluoride nanoparticles
    Mikheeva, OP
    Sidorov, AI
    JOURNAL OF OPTICAL TECHNOLOGY, 2003, 70 (12) : 908 - 909
  • [4] High-efficiency broadband achromatic metalens for near-IR biological imaging window
    Yujie Wang
    Qinmiao Chen
    Wenhong Yang
    Ziheng Ji
    Limin Jin
    Xing Ma
    Qinghai Song
    Alexandra Boltasseva
    Jiecai Han
    Vladimir M. Shalaev
    Shumin Xiao
    Nature Communications, 12
  • [5] High-efficiency broadband achromatic metalens for near-IR biological imaging window
    Wang, Yujie
    Chen, Qinmiao
    Yang, Wenhong
    Ji, Ziheng
    Jin, Limin
    Ma, Xing
    Song, Qinghai
    Boltasseva, Alexandra
    Han, Jiecai
    Shalaev, Vladimir M.
    Xiao, Shumin
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges
    de Ceglia, D.
    Vincenti, M. A.
    Cappeddu, M. G.
    Centini, M.
    Akozbek, N.
    D'Orazio, A.
    Haus, J. W.
    Bloemer, M. J.
    Scalora, M.
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [7] Design of achromatic annular folded lens with multilayer diffractive optics for the visible and near-IR wavebands
    Piao, Mingxu
    Zhang, Bo
    Dong, Keyan
    OPTICS EXPRESS, 2020, 28 (20): : 29076 - 29085
  • [8] Fabrication and Pulsed Laser Modification of Antireflective Composite Materials for the Visible and Near-IR Ranges
    Komarov, F. F.
    Parfimovich, I. D.
    Milchanin, O., V
    Tkachev, A. G.
    Melezhik, A., V
    Memetov, N. R.
    Stolyarov, R. A.
    Ludchik, O. R.
    Kolchevskaya, M. N.
    Miranovich, R. B.
    MICROSTRUCTURE AND PROPERTIES OF MICRO- AND NANOSCALE MATERIALS, FILMS, AND COATINGS (NAP 2019), 2020, 240 : 353 - 359
  • [9] VISIBLE AND NEAR-IR LASER MODULATION
    ROSS, M
    ELECTRO-TECHNOLOGY, 1969, 83 (02): : 21 - &
  • [10] Optical Properties of Human Eye Cataractous Lens in vitro in the Visible and Near-IR Ranges of the Spectrum
    Belikov, A. V.
    Zagorul'ko, A. M.
    Smirnov, S. N.
    Sergeev, A. N.
    Mikhailova, A. A.
    Shimko, A. A.
    OPTICS AND SPECTROSCOPY, 2019, 126 (05) : 574 - 579