NONEQUILIBRIUM-DIFFUSION LIMIT OF THE COMPRESSIBLE EULER-P1 APPROXIMATION RADIATION MODEL AT LOW MACH NUMBER

被引:8
|
作者
Jiang, Song [1 ]
Ju, Qiangchang [1 ]
Liao, Yongkai [1 ,2 ,3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] China Univ Geosci, Ctr Math Sci, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
关键词
diffusion limit; low Mach number limit; radiation hydrodynamics; Euler-P1; approximation; large temperature variation; INCOMPRESSIBLE LIMIT; HYPERBOLIC SYSTEMS; SINGULAR LIMITS; EXISTENCE; EQUATIONS;
D O I
10.1137/20M1344342
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We rigorously show the nonequilibrium-diffusion limit of the compressible Euler-P1 approximation model arising in radiation hydrodynamics as the Mach number tends to zero when the initial data is well prepared. In particular, the effect of the large temperature variation upon the limit is taken into account. The model leads to a singular problem which fails to fall into the category of the classical theory of singular limits for quasi-linear hyperbolic equations. By introducing an appropriate normed space of solutions and exploiting the structure of the system, we establish the uniform local existence of smooth solutions and the convergence of the model to the incompressible nonhomogeneous Euler system coupled with a diffusion equation.
引用
收藏
页码:2491 / 2522
页数:32
相关论文
共 23 条
  • [1] NONEQUILIBRIUM-DIFFUSION LIMIT OF THE COMPRESSIBLE EULER-P1 APPROXIMATION MODEL ARISING FROM RADIATION HYDRODYNAMICS
    Ju, Q. I. A. N. G. C. H. A. N. G.
    Liao, Y. O. N. G. K. A., I
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (06) : 1637 - 1657
  • [2] Nonequilibrium-diffusion limit of the compressible Euler radiation model in R3
    Li, Lei
    Zhang, Zhengce
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (18) : 14054 - 14078
  • [3] Low Mach Number Limit of a Compressible Euler-Korteweg Model
    Wang, Yajie
    Yang, Jianwei
    APPLICATIONS OF MATHEMATICS, 2023, 68 (01) : 99 - 108
  • [4] Low Mach number limit of a compressible Euler-Korteweg model
    Yajie Wang
    Jianwei Yang
    Applications of Mathematics, 2023, 68 : 99 - 108
  • [5] ON THE LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE EULER SYSTEM
    Feireisl, Eduard
    Klingenberg, Christian
    Markfelder, Simon
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 1496 - 1513
  • [6] Low Mach number limit of the compressible Euler–Cattaneo–Maxwell equations
    Fucai Li
    Shuxing Zhang
    Zhipeng Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [7] Low Mach number limit of the compressible Euler-Cattaneo-Maxwell equations
    Li, Fucai
    Zhang, Shuxing
    Zhang, Zhipeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [8] Low Mach number limit of a compressible micropolar fluid model
    Su, Jingrui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 38 : 21 - 34
  • [9] Low Mach number limit of compressible two-fluid model
    Yang, Jianwei
    Cheng, Peng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [10] Low Mach number limit of compressible two-fluid model
    Jianwei Yang
    Peng Cheng
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71