Consistency of a nonparametric least squares estimator in integer-valued GARCH models

被引:2
|
作者
Wechsung, Maximilian [1 ,2 ]
Neumann, Michael H. [2 ]
机构
[1] Charite Univ Med Berlin, Inst Biometrie & Klin Epidemiol, Charitepl 1, D-10117 Berlin, Germany
[2] Friedrich Schiller Univ Jena, Inst Math, Ernst Abbe Pl 2, D-07743 Jena, Germany
关键词
INGARCH; nonparametric least squares; empirical process; mixing; ABSOLUTE REGULARITY;
D O I
10.1080/10485252.2022.2043310
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a nonparametric version of the integer-valued GARCH(1,1) model for time series of counts. The link function in the recursion for the variances is not specified by finite-dimensional parameters. Instead we impose nonparametric smoothness conditions. We propose a least squares estimator for this function and show that it is consistent with a rate that we conjecture to be nearly optimal.
引用
收藏
页码:491 / 519
页数:29
相关论文
共 50 条