Finite element modeling of electromagnetic properties in photonic bianisotropic structures

被引:7
|
作者
Xiong, Zhongfei [1 ]
Chen, Weijin [1 ,2 ]
Wang, Zhuoran [1 ]
Xu, Jing [1 ,3 ]
Chen, Yuntian [1 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn ECE, Singapore 117583, Singapore
[3] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
bianisotropic; finite element method; adjoint; HOMOGENIZATION; METAMATERIALS; PARAMETERS;
D O I
10.1007/s12200-021-1213-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given a constitutive relation of the bianisotropic medium, it is not trivial to study how light interacts with the photonic bianisotropic structure due to the limited available means of studying electromagnetic properties in bianisotropic media. In this paper, we study the electromagnetic properties of photonic bianisotropic structures using the finite element method. We prove that the vector wave equation with the presence of bianisotropic is self-adjoint under scalar inner product. we propose a balanced formulation of weak form in the practical implementation, which outperforms the standard formulation in finite element modeling. Furthermore, we benchmark our numerical results obtained from finite element simulation in three different scenarios. These are bianisotropy-dependent reflection and transmission of plane waves incident onto a bianisotropic slab, band structure of bianisotropic photonic crystals with valley-dependent phenomena, and the modal properties of bianisotropic ring resonators. The first two simulated results obtained from our modified weak form yield excellent agreements either with theoretical predictions or available data from the literature, and the modal properties in the last example, i.e., bianisotropic ring resonators as a polarization-dependent optical insulator, are also consistent with the theoretical analyses.
引用
收藏
页码:148 / 153
页数:6
相关论文
共 50 条
  • [1] Finite element modeling of electromagnetic properties in photonic bianisotropic structures
    Zhongfei Xiong
    Weijin Chen
    Zhuoran Wang
    Jing Xu
    Yuntian Chen
    Frontiers of Optoelectronics, 2021, 14 : 148 - 153
  • [2] Finite element modeling of electromagnetic properties in photonic bianisotropic structures
    Zhongfei XIONG
    Weijin CHEN
    Zhuoran WANG
    Jing XU
    Yuntian CHEN
    Frontiers of Optoelectronics, 2021, 14 (02) : 148 - 153
  • [3] Electromagnetic energy transport in finite photonic structures
    de Dios-Leyva, M.
    Duque, C. A.
    Drake-Perez, J. C.
    OPTICS EXPRESS, 2014, 22 (11): : 12760 - 12772
  • [4] Efficient Floquet Port Modeling of Electromagnetic Periodic Structures in a Finite Element Method
    Cao, Qiong
    Shen, Weijin
    Zuo, Sheng
    Lin, Zhongchao
    Zhao, Xunwang
    Liu, Yafei
    2024 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY, ICMMT, 2024,
  • [5] Finite element analysis of electromagnetic waves in two-dimensional transformed bianisotropic media
    Liu, Yan
    Gralak, Boris
    Guenneau, Sebastien
    OPTICS EXPRESS, 2016, 24 (23): : 26479 - 26493
  • [6] Electromagnetic modeling of bianisotropic Debye materials
    Belyamoun, M. H.
    Zouhdi, S.
    ICEAA: 2009 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, VOLS 1 AND 2, 2009, : 952 - 953
  • [7] FINITE-ELEMENT MODELING OF ELECTROMAGNETIC-WAVE INTERACTIONS WITH PERIODIC DIELECTRIC STRUCTURES
    PINELLO, WP
    LEE, R
    CANGELLARIS, AC
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1994, 42 (12) : 2294 - 2301
  • [8] ELECTROMAGNETIC MODELING BY FINITE-ELEMENT METHOD
    RIJO, L
    WARD, SH
    HOHMANN, GW
    MASON, WE
    GEOPHYSICS, 1976, 41 (02) : 371 - 371
  • [9] ELECTROMAGNETIC AND ELECTRICAL MODELING BY FINITE ELEMENT METHOD
    COGGON, JH
    GEOPHYSICS, 1971, 36 (01) : 132 - &
  • [10] Finite Element Modeling of Nanoscale Structures
    Zhuravkov, M. A.
    Nagornyi, Yu. E.
    Repchenkov, V. I.
    NANOTECHNOLOGIES IN RUSSIA, 2011, 6 (9-10): : 597 - 606