A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs

被引:46
|
作者
Lovasz, L
Schrijver, A
机构
[1] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[2] Ctr Wiskunde & Informat, NL-1098 SJ Amsterdam, Netherlands
[3] Univ Amsterdam, Dept Math, NL-1081 TV Amsterdam, Netherlands
关键词
D O I
10.1090/S0002-9939-98-04244-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any undirected graph G, let mu(G) be the graph parameter introduced by Colin de Verdiere. In this paper we show that mu(G) less than or equal to 4 if and only if G is linklessly embeddable (in R-3). This forms a spectral characterization of linklessly embeddable graphs, and was conjectured by Robertson, Seymour, and Thomas. A key ingredient is a Borsuk-type theorem on the existence of a pair of antipodal linked (k - 1)-spheres in certain mappings phi : S-2k --> R2k-1. This result might be of interest in its own right. We also derive that lambda(G) less than or equal to 4 for each linklessly embeddable graph G = (V, E), where lambda(G) is the graph parameter introduced by van der Hoist, Laurent, and Schrijver. (It is the largest dimension of any subspace L of R-V such that for each nonzero x is an element of L, the positive support of x induces a nonempty connected subgraph of G.).
引用
收藏
页码:1275 / 1285
页数:11
相关论文
共 50 条
  • [1] The complement problem for linklessly embeddable graphs
    Odeneal, Ryan
    Naimi, Ramin
    Pavelescu, Andrei
    Pavelescu, Elena
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2022, 31 (11)
  • [2] The Extremal Function for Bipartite Linklessly Embeddable Graphs
    Rose McCarty
    Robin Thomas
    Combinatorica, 2019, 39 : 1081 - 1104
  • [3] The Extremal Function for Bipartite Linklessly Embeddable Graphs
    McCarty, Rose
    Thomas, Robin
    COMBINATORICA, 2019, 39 (05) : 1081 - 1104
  • [4] A GENERALIZATION OF BORSUK THEOREM ON ANTIPODAL POINTS
    SIEKLUCKI, K
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1969, 17 (10): : 629 - +
  • [5] Intrinsically knotted graphs with linklessly embeddable simple minors
    Mattman, Thomas W.
    Naimi, Ramin
    Pavelescu, Andrei
    Pavelescu, Elena
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (02): : 1203 - 1223
  • [6] Borsuk's antipodal theorem for approachable correspondences
    Bonnisseau, J. -M.
    Chebbi, S.
    Gourdel, P.
    Hammami, H.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) : 3502 - 3506
  • [7] A PROOF OF THE BORSUK ANTIPODAL THEOREM FOR FREDHOLM MAPS
    GEBA, K
    GRANAS, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 96 (01) : 196 - 202
  • [8] An Infinite Family of Linklessly Embeddable Tutte-4-Connected Graphs
    Andrei Pavelescu
    Elena Pavelescu
    Graphs and Combinatorics, 2022, 38
  • [9] An Infinite Family of Linklessly Embeddable Tutte-4-Connected Graphs
    Pavelescu, Andrei
    Pavelescu, Elena
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [10] Distributed approximation algorithms for k-dominating set in graphs of bounded genus and linklessly embeddable graphs
    Czygrinow, Andrzej
    Hanckowiak, Michal
    Wawrzyniak, Wojciech
    Witkowski, Marcin
    THEORETICAL COMPUTER SCIENCE, 2020, 809 (809) : 327 - 338