IMAGES OF MANIFOLDS WITH SEMI-AMPLE ANTI-CANONICAL DIVISOR

被引:4
|
作者
Birkar, Caucher [1 ]
Chen, Yifei [2 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Chinese Acad Sci, Inst Math, Hua Lookeng Key Lab Math, 55 Zhonguancun East Rd, Beijing 100190, Peoples R China
关键词
D O I
10.1090/jag/662
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if f : X -> Z is a smooth surjective morphism between projective manifolds and if -K-X is semi-ample, then -K-Z is also semiample. This was conjectured by Fujino and Gongyo. We list several counterexamples to show that this fails without the smoothness assumption on f. We prove the above result by proving some results concerning the moduli divisor of the canonical bundle formula associated to a klt-trivial fibration (X, B)-> Z.
引用
收藏
页码:273 / 287
页数:15
相关论文
共 50 条
  • [1] Projective klt pairs with nef anti-canonical divisor
    Campana, Frederic
    Cao, Junyan
    Matsumura, Shin-ichi
    ALGEBRAIC GEOMETRY, 2021, 8 (04): : 430 - 464
  • [2] Compact Kahler manifolds with hermitian semi-positive anti-canonical bundle
    Demailly, JP
    Peternell, T
    Schneider, M
    COMPOSITIO MATHEMATICA, 1996, 101 (02) : 217 - 224
  • [3] ALGEBRAIC-SURFACES WITH NEF AND BIG ANTI-CANONICAL DIVISOR
    ZHANG, DQ
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 117 : 161 - 163
  • [4] SMOOTHNESS OF THE GENERAL ANTI-CANONICAL DIVISOR ON A FANO 3-FOLD
    SOKUROV, VV
    MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 14 (02): : 395 - 405
  • [5] Second Chern class of Fano manifolds and anti-canonical geometry
    Liu, Jie
    MATHEMATISCHE ANNALEN, 2019, 375 (1-2) : 655 - 669
  • [6] Second Chern class of Fano manifolds and anti-canonical geometry
    Jie Liu
    Mathematische Annalen, 2019, 375 : 655 - 669
  • [7] On Foliations with Semi-positive Anti-canonical Bundle
    Stéphane Druel
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 315 - 321
  • [8] On Foliations with Semi-positive Anti-canonical Bundle
    Druel, Stephane
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (01): : 315 - 321
  • [9] INEQUALITIES OF CHERN CLASSES ON NONSINGULAR PROJECTIVE n-FOLDS WITH AMPLE CANONICAL OR ANTI-CANONICAL LINE BUNDLES
    Du, Rong
    Sun, Hao
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 122 (03) : 377 - 398
  • [10] PROJECTIVE FLATNESS OVER KLT SPACES AND UNIFORMISATION OF VARIETIES WITH NEF ANTI-CANONICAL DIVISOR
    Greb, Daniel
    Kebekus, Stefan
    Peternell, Thomas
    JOURNAL OF ALGEBRAIC GEOMETRY, 2022, : 467 - 496