Morphisms of groupoid actions and recurrence

被引:1
|
作者
Flores, F. [1 ]
Mantoiu, M. [2 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Beauchef 851,Oficina 436, Santiago, Chile
[2] Univ Chile, Fac Ciencias, Dept Matemat, Las Palmeras 3425,Casilla 653, Santiago, Chile
关键词
Groupoid action; Dynamical system morphism; Orbit; Minimal; Transitive; Wandering; Factor; CLASSICAL PSEUDOGROUPS; QUANTUM;
D O I
10.1016/j.topol.2022.108122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Topological groupoids admit various types of morphisms. We push these notions to the level of continuous groupoid actions to obtain various types of groupoid action morphisms. Some dynamical properties and their relation to these morphisms are studied. Among them are recurrence, various forms of transitivity, minimality, limit, recurrent, periodic and almost periodic points. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] The groupoid structure of groupoid morphisms
    Chen, Bohui
    Du, Cheng-Yong
    Wang, Rui
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 145
  • [2] Fell bundles associated to groupoid morphisms
    Deaconu, Valentin
    Kumjian, Alex
    Ramazan, Birant
    MATHEMATICA SCANDINAVICA, 2008, 102 (02) : 305 - 319
  • [3] Inverse semigroup actions as groupoid actions
    Alcides Buss
    Ruy Exel
    Ralf Meyer
    Semigroup Forum, 2012, 85 : 227 - 243
  • [4] Inverse semigroup actions as groupoid actions
    Buss, Alcides
    Exel, Ruy
    Meyer, Ralf
    SEMIGROUP FORUM, 2012, 85 (02) : 227 - 243
  • [5] Groupoid actions on C*-correspondences
    Deaconu, Valentin
    NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 1020 - 1038
  • [6] DUALITY FOR GROUPOID (CO)ACTIONS
    Paques, Antonio
    Flores, Daiana
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (02) : 637 - 663
  • [7] On the Galois map for groupoid actions
    Paques, Antonio
    Tamusiunas, Thaisa
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (03) : 1037 - 1047
  • [8] Topological dynamics of groupoid actions
    Flores, Felipe
    Mantoiu, Marius
    GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (03) : 1005 - 1047
  • [9] Contact reduction and groupoid actions
    Zambon, M
    Zhu, CC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) : 1365 - 1401
  • [10] Uniform enveloping semigroupoids for groupoid actions
    Edeko, Nikolai
    Kreidler, Henrik
    JOURNAL D ANALYSE MATHEMATIQUE, 2022, 148 (02): : 739 - 796