Shear stress promotes differentiation of stem cells from human exfoliated deciduous teeth into endothelial cells via the downstream pathway of VEGF-Notch signaling

被引:27
|
作者
Wang, Penglai [1 ]
Zhu, Shaoyue [2 ]
Yuan, Changyong [1 ]
Wang, Lei [3 ]
Xu, Jianguang [4 ]
Liu, Zongxiang [5 ]
机构
[1] Xuzhou Stomatol Hosp, Dent Implant Ctr, Xuzhou, Jiangsu, Peoples R China
[2] Xuzhou Stomatol Hosp, Dept Orthodont, Xuzhou, Jiangsu, Peoples R China
[3] Xuzhou Stomatol Hosp, Dept Periodont, Xuzhou, Jiangsu, Peoples R China
[4] Univ Hong Kong, Fac Dent, Discipline Endodontol, Hong Kong, Hong Kong, Peoples R China
[5] Xuzhou Stomatol Hosp, Dept ExperDignosis, 130 Huaihaixi Rd, Xuzhou 221000, Jiangsu, Peoples R China
关键词
angiogenesis; shear stress; SHEDs; EphrinB2; VEGF-DLL4/Notch signaling; GROWTH-FACTOR VEGF; VENOUS VESSELS; ARTERIAL; EXPRESSION; ANGIOGENESIS; EPHB4; SPECIFICATION;
D O I
10.3892/ijmm.2018.3761
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Effects of shear stress on endotheliaxl differentiation of stem cells from human exfoliated deciduous teeth (SHEDs) were investigated. SHEDs were treated with shear stress, then reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to analyse the mRNA expression of arterial markers and western blot analysis was performed to analyse protein expression of angiogenic markers. Additionally, in vitro matrigel angiogenesis assay was performed to evaluate vascular-like structure formation. The secreted protein expression levels of the vascular endothelial growth factor (VEGF) of SHEDs after shear stress was also quantified using corresponding ELISA kits. Untreated SHEDs seeded on Matrigel cannot form vessel-like structures at any time points, whereas groups treated with shear stress formed a few vessel-like structures at 4, 8 and 12 h. When SHEDs were treated with EphrinB2-siRNA for 24, the capability of vessel-like structure formation was suppressed. After being treated with shear stress, the expression of VEGF, VEGFR2, DLL4, Notchl, EphrinB2, Hey1and Hey2 (arterial markers) gene expression was significantly upregulated, moreover, the protein levels of VEGFR2, EphrinB2, CD31, Notchl, DLL4, Hey1, and Hey2 were also significantly upregulated. Both the mRNA and protein expression levels of EphB4 (venous marker) were downregulated. The average VEGF protein concentration in supernatants secreted by shear stress treated SHEDS groups increased significantly. In conclusion, shear stress was able to induce arterial endothelial differentiation of stem cells from human exfoliated deciduous teeth, and VEGF-DLL4/Notch-EphrinB2 signaling was involved in this process.
引用
收藏
页码:1827 / 1836
页数:10
相关论文
共 50 条
  • [1] Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth
    Gong, Ting
    Heng, Boon Chin
    Xu, Jianguang
    Zhu, Shaoyue
    Yuan, Changyong
    Lo, Edward Chin Man
    Zhang, Chengfei
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (04) : 1083 - 1093
  • [2] Mitochondria Regulate the Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth
    Kato, Hiroki
    Thanh Thi Mai Pham
    Yamaza, Haruyoshi
    Masuda, Keiji
    Hirofuji, Yuta
    Han, Xu
    Sato, Hiroshi
    Taguchi, Tomoaki
    Nonaka, Kazuaki
    [J]. CELL STRUCTURE AND FUNCTION, 2017, 42 (02) : 105 - 116
  • [3] Graphene Oxide Quantum Dots Promote Osteogenic Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth via the Wnt/β-Catenin Signaling Pathway
    Yang, Xin
    Zhao, Qi
    Chen, JingWen
    Liu, Jiayue
    Lin, Jiacheng
    Lu, Jiaxuan
    Li, Wenqing
    Yu, Dongsheng
    Zhao, Wei
    [J]. STEM CELLS INTERNATIONAL, 2021, 2021
  • [4] Osteoblastic Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth by Probiotic Hydroxyapatite
    Nouri, Sabereh
    Roghanian, Rasoul
    Emtiazi, Giti
    Gunduz, Oguzhan
    Shafiei, Rasoul
    [J]. CELL JOURNAL, 2023, 25 (11) : 753 - 763
  • [5] SHED: Stem cells from human exfoliated deciduous teeth
    Miura, M
    Gronthos, S
    Zhao, MR
    Lu, B
    Fisher, LW
    Robey, PG
    Shi, ST
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) : 5807 - 5812
  • [6] Metformin enhances osteogenic differentiation of stem cells from human exfoliated deciduous teeth through AMPK pathway
    Zhao, Xuedan
    Pathak, Janak L.
    Huang, Wenyan
    Zhu, Chuandong
    Li, Yunyang
    Guan, Hongbing
    Zeng, Sujuan
    Ge, Linhu
    Shu, Yan
    [J]. JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 14 (12) : 1869 - 1879
  • [7] Comparative Analysis of Proliferation and Differentiation Potentials of Stem Cells from Inflamed Pulp of Deciduous Teeth and Stem Cells from Exfoliated Deciduous Teeth
    Yu, Shi
    Diao, Shu
    Wang, Jinsong
    Ding, Gang
    Yang, Dongmei
    Fan, Zhipeng
    [J]. BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [8] In Vivo Angiogenic Capacity of Stem Cells from Human Exfoliated Deciduous Teeth with Human Umbilical Vein Endothelial Cells
    Kim, Ji-Hye
    Kim, Gee-Hye
    Kim, Jae-Won
    Pyeon, Hee Jang
    Lee, Jae Cheoun
    Lee, Gene
    Nam, Hyun
    [J]. MOLECULES AND CELLS, 2016, 39 (11) : 790 - 796
  • [9] Immunomodulatory properties of stem cells from human exfoliated deciduous teeth
    Takayoshi Yamaza
    Akiyama Kentaro
    Chider Chen
    Yi Liu
    Yufang Shi
    Stan Gronthos
    Songlin Wang
    Songtao Shi
    [J]. Stem Cell Research & Therapy, 1
  • [10] Stem Cells from Human Exfoliated Deciduous Teeth: A Concise Review
    Ko, Chih-Sheng
    Chen, Jen-Hao
    Su, Wen-Ta
    [J]. CURRENT STEM CELL RESEARCH & THERAPY, 2020, 15 (01) : 61 - 76