共 50 条
Heavy-mass magnetic modes in pyrochlore iridates due to dominant Dzyaloshinskii-Moriya interaction
被引:22
|作者:
Yadav, Ravi
[1
]
Pereiro, Manuel
[2
]
Bogdanov, Nikolay A.
[1
,4
]
Nishimoto, Satoshi
[1
]
Bergman, Anders
[2
]
Eriksson, Olle
[2
]
van den Brink, Jeroen
[1
,3
]
Hozoi, Liviu
[1
]
机构:
[1] IFW Dresden, Inst Theoret Solid State Phys, Helmholtzstr 20, D-01069 Dresden, Germany
[2] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
[3] Tech Univ Dresden, Dept Phys, D-01062 Dresden, Germany
[4] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
来源:
基金:
瑞典研究理事会;
关键词:
EXCHANGE;
STATES;
D O I:
10.1103/PhysRevMaterials.2.074408
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Materials with strong spin-orbit interactions are presently a main target in the search for systems with novel magnetic properties. Magnetic anisotropies can be very large in such compounds, ranging from strongly frustrated Kitaev exchange and the associated spin-liquid states in honeycomb iridates to robust antisymmetric couplings in square-lattice Sr2IrO4. Here we predict from ab initio quantum chemistry calculations that another highly unusual regime is realized in pyrochlore iridium oxides: the isotropic nearest-neighbor Heisenberg term can vanish while the antisymmetric Dzyaloshinskii-Moriya interaction reaches values as large as 5 meV, a result which challenges common notions and existing phenomenological models of magnetic superexchange. The resulting spin-excitation spectra reveal a very flat magnon dispersion in the Nd- and Tb-based pyrochlore iridates, suggesting the possibility of using these modes to store magnetic information. Indeed, the magnetization dynamics indicates that these modes are unable to propagate out of the excitation region. Although most of the results presented here are predictions of exotic magnetic states based on first-principles theory, we make connections to observations and establish the accuracy of our approach by reproducing experimental data for Sm2Ir2O4.
引用
收藏
页数:10
相关论文