Neuronal Hyperexcitability in APPSWE/PS1dE9 Mouse Models of Alzheimer's Disease

被引:18
|
作者
Mueller, Luisa [1 ,2 ,6 ]
Kirschstein, Timo [3 ,6 ]
Koehling, Ruediger [3 ,6 ]
Kuhla, Angela [2 ,6 ]
Teipel, Stefan [1 ,4 ,5 ,6 ]
机构
[1] Univ Rostock, Dept Psychosomat Med & Psychotherapy, Rostock, Germany
[2] Univ Rostock, Rudolf Zenker Inst Expt Surg, Rostock, Germany
[3] Univ Rostock, Oscar Langendorff Inst Physiol, Rostock, Germany
[4] German Ctr Neurodegenerat Dis DZNE, Rostock, Germany
[5] German Ctr Neurodegenerat Dis DZNE, Greifswald, Germany
[6] Univ Rostock, Ctr Transdisciplinary Neurosci Rostock CTNR, Rostock, Germany
关键词
Alzheimer's disease; amyloid-beta; APPswe/PS1dE9; mice; neuronal hyperexcitability; sleep-wake cycle; AMYLOID-PRECURSOR-PROTEIN; TRANSGENIC MICE; A-BETA; IN-VIVO; COGNITIVE IMPAIRMENT; SYNAPTIC PLASTICITY; EPILEPTIC ACTIVITY; OXIDATIVE STRESS; SLEEP; DEMENTIA;
D O I
10.3233/JAD-201540
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Transgenic mouse models serve a better understanding of Alzheimer's disease (AD) pathogenesis and its consequences on neuronal function. Well-known and broadly used AD models are APPswe/PS1dE9 mice, which are able to reproduce features of amyloid-beta (A beta) plaque formations as well as neuronal dysfunction as reflected in electrophysiological recordings of neuronal hyperexcitability. The most prominent findings include abnormal synaptic function and synaptic reorganization as well as changes in membrane threshold and spontaneous neuronal firing activities leading to generalized excitation-inhibition imbalances in larger neuronal circuits and networks. Importantly, these findings in APPswe/PS1dE9 mice are at least partly consistent with results of electrophysiological studies in humans with sporadic AD. This underscores the potential to transfer mechanistic insights into amyloid related neuronal dysfunction from animal models to humans. This is of high relevance for targeted downstream interventions into neuronal hyperexcitability, for example based on repurposing of existing antiepileptic drugs, as well as the use of combinations of imaging and electrophysiological readouts to monitor effects of upstream interventions into amyloid build-up and processing on neuronal function in animal models and human studies. This article gives an overview on the pathogenic and methodological basis for recording of neuronal hyperexcitability in AD mouse models and on key findings in APPswe/PS1dE9 mice. We point at several instances to the translational perspective into clinical intervention and observation studies in humans. We particularly focus on bi-directional relations between hyperexcitability and cerebral amyloidosis, including build-up as well as clearance of amyloid, possibly related to sleep and so called glymphatic system function.
引用
收藏
页码:855 / 869
页数:15
相关论文
共 50 条
  • [1] Alterations of cholinergic markers in transgenic APPswe/PS1dE9 and APPswe/PS1A246E mouse models of Alzheimer's disease
    Machova, E.
    Jakubik, J.
    Michal, P.
    Oksman, M.
    Iivonen, W.
    Tanila, H.
    Dolezal, V.
    JOURNAL OF NEUROCHEMISTRY, 2007, 102 : 133 - 133
  • [2] Amyloid Deposition and Inflammation in APPswe/PS1dE9 Mouse Model of Alzheimer's Disease
    Ruan, Lingfei
    Kang, Zhoujun
    Pei, Gang
    Le, Yingying
    CURRENT ALZHEIMER RESEARCH, 2009, 6 (06) : 531 - 540
  • [3] Cardiomyocyte Contractile Dysfunction in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease
    Turdi, Subat
    Guo, Rui
    Huff, Anna F.
    Wolf, Eliza M.
    Culver, Bruce
    Ren, Jun
    PLOS ONE, 2009, 4 (06):
  • [4] Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease
    Garcia-Alloza, Monica
    Robbins, Elissa M.
    Zhang-Nunes, Sandy X.
    Purcell, Susan M.
    Betensky, Rebecca A.
    Raju, Susan
    Prada, Claudia
    Greenberg, Steven M.
    Bacskai, Brian J.
    Frosch, Matthew P.
    NEUROBIOLOGY OF DISEASE, 2006, 24 (03) : 516 - 524
  • [5] Neurodegeneration in Amygdala Precedes Hippocampus in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease
    Lin, Tzu-Wei
    Liu, Yu-Fan
    Shih, Yao-Hsiang
    Chen, Shean-Jen
    Huang, Tung-Yi
    Chang, Chia-Yuan
    Lien, Chi-Hsiang
    Yu, Lung
    Chen, Shun-Hua
    Kuo, Yu-Min
    CURRENT ALZHEIMER RESEARCH, 2015, 12 (10) : 951 - 963
  • [6] Biochemical and behavioral characterization of the double transgenic mouse model (APPswe/PS1dE9) of Alzheimer's disease
    Xiong, Huaqi
    Callaghan, Debbie
    Wodzinska, Jolanta
    Xu, Jiejing
    Premyslova, Maryna
    Liu, Qing-Yan
    Connelly, John
    Zhang, Wandong
    NEUROSCIENCE BULLETIN, 2011, 27 (04) : 221 - 232
  • [7] Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease
    Pedros, Ignacio
    Petrov, Dmitry
    Allgaier, Michael
    Sureda, Francesc
    Barroso, Emma
    Beas-Zarate, Carlos
    Auladell, Carme
    Pallas, Merce
    Vazquez-Carrera, Manuel
    Casadesus, Gemma
    Folch, Jaume
    Camins, Antoni
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2014, 1842 (09): : 1556 - 1566
  • [8] Eicosapentaenoic Acid Protects against Metabolic Impairments in the APPswe/PS1dE9 Alzheimer's Disease Mouse Model
    Yavari, Mahsa
    Ramalingam, Latha
    Harris, Breanna N.
    Kahathuduwa, Chanaka Nadeeshan
    Chavira, Angela
    Biltz, Caroline
    Mounce, Logan
    Maldonado, Kaylee Alers
    Scoggin, Shane
    Zu, Yujiao
    Kalupahana, Nishan Sudheera
    Yosofvand, Mohammad
    Moussa, Hanna
    Moustaid-Moussa, Naima
    JOURNAL OF NUTRITION, 2023, 153 (04): : 1038 - 1051
  • [9] Impaired muscarinic regulation of excitatory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimer's disease
    Goto, Yasuaki
    Niidome, Tetsuhiro
    Hongo, Haruyuki
    Akaike, Akinori
    Kihara, Takeshi
    Sugimoto, Hachiro
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2008, 583 (01) : 84 - 91
  • [10] Temporal Characterization of the Amyloidogenic APPswe/PS1dE9;hAPOE4 Mouse Model of Alzheimer's Disease
    Grenon, Martine B.
    Papavergi, Maria-Tzousi
    Bathini, Praveen
    Sadowski, Martin
    Lemere, Cynthia A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)