Optimization and design of machine learning computational technique for prediction of physical separation process

被引:10
|
作者
Li, Haiqing [1 ,2 ]
Nasirin, Chairun [3 ]
Abed, Azher M. [4 ]
Bokov, Dmitry Olegovich [5 ,6 ]
Thangavelu, Lakshmi [7 ]
Marhoon, Haydar Abdulameer [8 ,9 ]
Rahman, Md Lutfor [10 ]
机构
[1] Zhejiang Ind Polytech Coll, Coll Mech & Elect Engn, Shaoxing 312000, Zhejiang, Peoples R China
[2] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, Zhejiang, Peoples R China
[3] Coll Hlth Sci STIKES Mataram, Mataram, Indonesia
[4] Al Mustaqbal Univ Coll, Dept Air Conditioning & Refrigerat, Babylon, Iraq
[5] Sechenov First Moscow State Med Univ, Inst Pharm, 8 Trubetskaya St,Bldg 2, Moscow 119991, Russia
[6] Fed Res Ctr Nutr Biotechnol & Food Safety, Food Chem Lab, 2-14 Ustyinsky pr, Moscow 109240, Russia
[7] Saveetha Univ, Saveetha Inst Med & Tech Sci, Dept Pharmacol, Saveetha Dent Coll, Chennai, Tamil Nadu, India
[8] Al Ayen Univ, Ctr Sci Res, Informat & Commun Technol Res Grp, Thi Qar, Iraq
[9] Univ Kerbala, Coll Comp Sci & Informat Technol, Karbala, Iraq
[10] Univ Malaysia Sabah, Fac Sci & Nat Resources, Kota Kinabalu 88400, Sabah, Malaysia
关键词
Machine learning; Artificial intelligence; Modeling; Optimization; Separation; MASS-TRANSFER SIMULATION; KRIGING HYBRID MODEL; ZEOLITE MEMBRANES; ADSORPTION; EXTRACTION; REMOVAL; WATER; CFD; REGRESSION; TRANSPORT;
D O I
10.1016/j.arabjc.2021.103680
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning (ML) methods were developed and optimized for description and understanding a physical separation process. Indeed, this work indicates application of machine learning technique for a real physical system and optimization of process parameters to achieve the target. A bunch of datasets were extracted from resources for physical adsorption process in removal of impurities from water as a case study to test the developed machine learning model. The case study process is adsorption process which has extensive application in science and engineering. The machine learning (ML) method was developed, and the parameters were optimized in order to get the best simulation's performance for adsorption process. The data are used to correlate the adsorption capacity of the material to the adsorption parameters including dosage and solution pH. Randomized training and validation were performed to predict the process's output, and great agreement was obtained between the predicted values and the observed values with R2 values greater than 0.9 for all cases of training and validation at the optimum conditions. Three different machine learning techniques including Random Forest (RF), Extra Tree (ET), and Gradient Boosting (GB) were employed for the adsorption data. Quantitatively, R-2 scores of 0.958, 0.998, and 0.999 were obtained for RF, GB, and ET, respectively. It was indicated that GB and ET models performed almost the same and better than RF in prediction of adsorption data. (c) 2021 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Machine Learning in Computational Design and Optimization of Disordered Nanoporous Materials
    Vishnyakov, Aleksey
    MATERIALS, 2025, 18 (03)
  • [2] Chatter prediction in boring process using machine learning technique
    Saravanamurugan S.
    Thiyagu S.
    Sakthivel N.R.
    Nair B.B.
    Saravanamurugan, S. (s_saravana@cb.amrita.edu), 2017, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (12) : 405 - 422
  • [3] Exposure Process Optimization Using Machine Learning Overlay Prediction
    Yoshida, Masahiro
    Wang, W. H.
    Huang, C. H.
    Yang, Elvis
    Yang, T. H.
    Chen, K. C.
    Takarada, Yosuke
    Sakamoto, Yoshiki
    Egashira, Shin-ichi
    Otani, Ken
    Saito, Tsukasa
    Katayama, Shoshi
    Miura, Seiya
    Shelton, Douglas
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVI, 2022, 12053
  • [4] Machine learning and LSSVR model optimization for gasification process prediction
    Cong, Wei
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (06) : 5991 - 6018
  • [5] Machine learning and computational design
    Carta, Silvio
    Ubiquity, 2020, 2020 (May)
  • [6] Influence of Optimization Algorithms and Computational Complexity on Concrete Compressive Strength Prediction Machine Learning Models for Concrete Mix Design
    Ziolkowski, Patryk
    MATERIALS, 2025, 18 (06)
  • [7] Machine Learning in Physical Design
    Li, Bowen
    Franzon, Paul D.
    2016 IEEE 25TH CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS (EPEPS), 2016, : 147 - 149
  • [8] Optimization and prediction of the cotton fabric dyeing process using Taguchi design-integrated machine learning approach
    Pervez, Md. Nahid
    Yeo, Wan Sieng
    Lin, Lina
    Xiong, Xiaorong
    Naddeo, Vincenzo
    Cai, Yingjie
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [9] Optimization and prediction of the cotton fabric dyeing process using Taguchi design-integrated machine learning approach
    Md. Nahid Pervez
    Wan Sieng Yeo
    Lina Lin
    Xiaorong Xiong
    Vincenzo Naddeo
    Yingjie Cai
    Scientific Reports, 13 (1)
  • [10] Machine learning-driven prediction of phosphorus adsorption capacity of biochar: Insights for adsorbent design and process optimization
    Lyu, Huafei
    Xu, Ziming
    Zhong, Jian
    Gao, Wenhao
    Liu, Jingxin
    Duan, Ming
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 369