Existence of global weak solutions to the kinetic Peterlin model

被引:6
|
作者
Gwiazda, P. [1 ,2 ]
Lukacova-Medvidova, M. [3 ]
Mizerova, H. [3 ,4 ,5 ]
Swierczewska-Gwiazda, A. [2 ]
机构
[1] Polish Acad Sci, Inst Math, Warsaw, Poland
[2] Univ Warsaw, Inst Appl Math & Mech, Warsaw, Poland
[3] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
[4] Czech Acad Sci, Inst Math, Prague, Czech Republic
[5] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia
关键词
Kinetic theory; Dilute polymer solutions; Peterlin approximation; Navier-Stokes-Fokker-Planck system; Weak solution; SPRING CHAIN MODELS; DILUTE POLYMERS;
D O I
10.1016/j.nonrwa.2018.05.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of kinetic models for polymeric fluids motivated by the Peterlin dumbbell theories for dilute polymer solutions with a nonlinear spring law for an infinitely extensible spring. The polymer molecules are suspended in an incompressible viscous Newtonian fluid confined to a bounded domain in two or three space dimensions. The unsteady motion of the solvent is described by the incompressible Navier-Stokes equations with the elastic extra stress tensor appearing as a forcing term in the momentum equation. The elastic stress tensor is defined by Kramer's expression through the probability density function that satisfies the corresponding Fokker-Planck equation. In this case a coefficient depending on the average length of polymer molecules appears in the latter equation. Following the recent work of Barrett and Suli (2018) we prove the existence of globalin-time weak solutions to the kinetic Peterlin model in two space dimensions. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:465 / 478
页数:14
相关论文
共 50 条
  • [1] GLOBAL EXISTENCE RESULT FOR THE GENERALIZED PETERLIN VISCOELASTIC MODEL
    Lukacova-Medvidova, Maria
    Mizerova, Hana
    Necasova, Sarka
    Renardy, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) : 2950 - 2964
  • [2] Global existence of weak solutions to an angiogenesis model
    N. Aïssa
    R. Alexandre
    Journal of Evolution Equations, 2016, 16 : 877 - 894
  • [3] Global existence of weak solutions to an angiogenesis model
    Aissa, N.
    Alexandre, R.
    JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (04) : 877 - 894
  • [4] Existence of global weak solutions to the kinetic Hookean dumbbell model for incompressible dilute polymeric fluids
    Barrett, John W.
    Suli, Endre
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 : 362 - 395
  • [5] Global existence and uniqueness result for the diffusive Peterlin viscoelastic model
    Lukacova-Medvid'ova, Maria
    Mizerova, Hana
    Necasova, Sarka
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 120 : 154 - 170
  • [6] Global existence of weak solutions to the regularized Hookean dumbbell model
    Zhang, Lingyun
    Zhang, Hui
    Zhang, Pingwen
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (01) : 85 - 124
  • [7] On global existence of weak solutions to a viscous capillary model of plasma
    Tang, Tong
    Gao, Hongjun
    Xiao, Qingkun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 185 : 1 - 14
  • [8] Existence of global weak solutions to some regularized kinetic models for dilute polymers
    Barrett, John W.
    Sueli, Endre
    MULTISCALE MODELING & SIMULATION, 2007, 6 (02): : 506 - 546
  • [9] EXISTENCE OF WEAK SOLUTIONS TO KINETIC FLOCKING MODELS
    Karper, Trygve K.
    Mellet, Antoine
    Trivisa, Konstantina
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) : 215 - 243
  • [10] Global existence of weak solutions to the FENE dumbbell model of polymeric flows
    Masmoudi, Nader
    INVENTIONES MATHEMATICAE, 2013, 191 (02) : 427 - 500