Knock-down of farnesyl pyrophosphate synthase protects heart-derived H9c2 cells against hypoxia/reoxygenation-induced injury

被引:7
|
作者
Dai, Dongpu [1 ]
Wu, Huandong [1 ]
Yang, Jian [1 ]
Shen, Shizhen [2 ]
Zhao, Chenze [1 ]
Ding, Jie [1 ]
Hu, Shenjiang [1 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 1, Coll Med, Inst Cardiol, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Med, Hangzhou, Zhejiang, Peoples R China
关键词
farnesyl pyrophosphate synthase; hypoxia; reoxygenation; Rac1; reactive oxygen species; REPERFUSION INJURY; MYOCARDIAL REPERFUSION; CARDIAC-HYPERTROPHY; INHIBITION; RAC1; MECHANISMS; APOPTOSIS; ISCHEMIA; LIVER; CARDIOMYOCYTES;
D O I
10.1002/cbin.10795
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Farnesyl pyrophosphate synthase (FPPS) is a key enzyme in the mevalonate pathway. Our previous studies have indicated that cardiac-specific overexpression of FPPS induces cardiac hypertrophy and dysfunction in mice, and inhibition of FPPS prevents angiotensin (Ang) II-induced hypertrophy in cardiomyocytes. However, the role for FPPS in myocardial ischemia/reperfusion (MIR) injury is still not clear. The objective of this work was to investigate the effect of FPPS on MIR injury in H9c2 cells which were subjected to hypoxia/reoxygenation (HR) to mimic MIR. Prior to HR, cells were transfected with pE-mFPPS, shFPPS, or pE-GFP. Our results showed that the overexpression of FPPS reduced cell proliferation, increased cell injury and cell apoptosis, and knock-down of FPPS improved cell proliferation, decreased cell injury, and cell apoptosis after HR. Besides, overexpression of FPPS increased Rac1 activity and reactive oxygen species (ROS) generation, while FPPS silencing decreased Rac1 activity and ROS generation. Based on these findings, we propose that knock-down of FPPS reduces Rac1 activity and ROS production, and finally leads to the decrease of HR-induced injury in H9c2 cells. These findings point that FPPS might be a potential target in preventing H9c2 cells from HR-induced injury.
引用
收藏
页码:982 / 990
页数:9
相关论文
共 50 条
  • [1] Effect of Geranylgeranyl Pyrophosphate Synthase on Hypoxia/Reoxygenation-Induced Injury in Heart-Derived H9c2 Cells
    Dai, Dongpu
    Yang, Jian
    Zhao, Chenze
    Wu, Huandong
    Ding, Jie
    Sun, Xiaotong
    Hu, Shenjiang
    INTERNATIONAL HEART JOURNAL, 2018, 59 (04) : 821 - 828
  • [2] Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells
    Chang, Guanglei
    Zhang, Dongying
    Liu, Jian
    Zhang, Peng
    Ye, Lin
    Lu, Kai
    Duan, Qin
    Zheng, Aihua
    Qin, Shu
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2014, 239 (04) : 414 - 422
  • [3] Lycopene protects against apoptosis in hypoxia/reoxygenation-induced H9C2 myocardioblast cells through increased autophagy
    Chen, Fei
    Sun, Ze-Wei
    Ye, Li-Fang
    Fu, Guo-Sheng
    Mou, Yun
    Hu, Shen-Jiang
    MOLECULAR MEDICINE REPORTS, 2015, 11 (02) : 1358 - 1365
  • [4] Neocryptotanshinone protects cardiomyocyte hypoxia/reoxygenation-induced H9C2 cell injury through targeting RxRα
    MA Lin
    CHEN Xu
    SHAO Ming-yan
    WANG Yong
    中国药理学与毒理学杂志, 2019, 33 (09) : 693 - 694
  • [5] HO-1 Protects against Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction in H9c2 Cardiomyocytes
    Chen, Dongling
    Jin, Zhe
    Zhang, Jingjing
    Jiang, Linlin
    Chen, Kai
    He, Xianghu
    Song, Yinwei
    Ke, Jianjuan
    Wang, Yanlin
    PLOS ONE, 2016, 11 (05):
  • [6] Saprirearine protects H9c2 cardiomyocytes against hypoxia/ reoxygenation-induced apoptosis by activating Nrf2
    Zhang, Gang
    Zhang, Dongying
    Zhang, Xiwen
    Yu, Kun
    Jiang, Aixia
    ACTA BIOCHIMICA POLONICA, 2022, 69 (02) : 429 - 436
  • [7] Protective effects of extendin-4 on hypoxia/reoxygenation-induced injury in H9c2 cells
    Lu, Kai
    Chang, Guanglei
    Ye, Lin
    Zhang, Peng
    Li, Yong
    Zhang, Dongying
    MOLECULAR MEDICINE REPORTS, 2015, 12 (02) : 3007 - 3016
  • [8] ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells
    Ekhterae, D
    Lin, ZW
    Lundberg, MS
    Crow, MT
    Brosius, FC
    Núñez, G
    CIRCULATION RESEARCH, 1999, 85 (12) : E70 - E77
  • [9] Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes
    Zhao, Ting-Ting
    Yang, Tian-Lun
    Gong, Li
    Wu, Pei
    GENE, 2018, 666 : 92 - 99
  • [10] Imperatorin protects H9c2 cardiomyoblasts cells from hypoxia/reoxygenation-induced injury through activation of ERK signaling pathway
    Liao, Bihong
    Chen, Ruimian
    Lin, Feng
    Mai, Aihuan
    Chen, Jie
    Li, Huimin
    Dong, Shaohong
    Xu, Zhenglei
    SAUDI PHARMACEUTICAL JOURNAL, 2017, 25 (04) : 615 - 619