Optimal bounds on the speed of subspace evolution*

被引:1
|
作者
Albeverio, Sergio [1 ,2 ]
Motovilov, Alexander K. [3 ,4 ]
机构
[1] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Univ Bonn, Hausdorff Ctr Math, Endenicher Allee 60, D-53115 Bonn, Germany
[3] JINR, Bogoliubov Lab Theoret Phys, Joliot Curie 6, Dubna 141980, Russia
[4] Dubna State Univ, Univ Skaya 19, Dubna 141980, Russia
关键词
Mandelstam-Tamm inequality; quantum speed limit; subspace evolution; OPTIMAL TIME EVOLUTION;
D O I
10.1088/1751-8121/ac6bcf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By a quantum speed limit one usually understands an estimate on how fast a quantum system can evolve between two distinguishable states. The most known quantum speed limit is given in the form of the celebrated Mandelstam-Tamm inequality that bounds the speed of the evolution of a state in terms of its energy dispersion. In contrast to the basic Mandelstam-Tamm inequality, we are concerned not with a single state but with a (possibly infinite-dimensional) subspace which is subject to the Schrodinger evolution. By using the concept of maximal angle between subspaces we derive optimal bounds on the speed of such a subspace evolution. These bounds may be viewed as further generalizations of the Mandelstam-Tamm inequality. Our study includes the case of unbounded Hamiltonians.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Quantum Speed Limits for Time Evolution of a System Subspace
    Albeverio, S.
    Motovilov, A. K.
    PHYSICS OF PARTICLES AND NUCLEI, 2022, 53 (02) : 287 - 291
  • [2] Quantum Speed Limits for Time Evolution of a System Subspace
    S. Albeverio
    A. K. Motovilov
    Physics of Particles and Nuclei, 2022, 53 : 287 - 291
  • [3] Entanglement and the lower bounds on the speed of quantum evolution
    Borras, A.
    Casas, M.
    Plastino, A. R.
    Plastino, A.
    PHYSICAL REVIEW A, 2006, 74 (02):
  • [4] Comment on "Connection between entanglement and the speed of quantum evolution" and on "Entanglement and the lower bounds on the speed of quantum evolution"
    Chau, H. F.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [5] Subspace packings: constructions and bounds
    Tuvi Etzion
    Sascha Kurz
    Kamil Otal
    Ferruh Özbudak
    Designs, Codes and Cryptography, 2020, 88 : 1781 - 1810
  • [6] Subspace packings: constructions and bounds
    Etzion, Tuvi
    Kurz, Sascha
    Otal, Kamil
    Ozbudak, Ferruh
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (09) : 1781 - 1810
  • [7] Quantum-speed-limit bounds in an open quantum evolution
    Mirkin, Nicolas
    Toscano, Fabricio
    Wisniacki, Diego A.
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [8] Reply to "Comment on 'Connection between entanglement and the speed of quantum evolution' and on 'Entanglement and the lower bounds on the speed of quantum evolution'"
    Batle, J.
    Borras, A.
    Casas, M.
    Plastino, A. R.
    Plastino, A.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [9] UNIFORM BOUNDS FOR INVARIANT SUBSPACE PERTURBATIONS
    Damle, Anil
    Sun, Yuekai
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (03) : 1208 - 1236
  • [10] Bounds of cardinality on subspace network codes
    Gabidulin, E. M.
    Pilipchuk, N. I.
    2014 INTERNATIONAL CONFERENCE ON ENGINEERING AND TELECOMMUNICATION (EN&T 2014), 2014, : 8 - 12