Pullout Strength Predictor: A Machine Learning Approach
被引:13
|
作者:
Khatri, Ravi
论文数: 0引用数: 0
h-index: 0
机构:
Indian Spinal Injuries Ctr, Biomech Lab, New Delhi, India
IIT Madras, Dept Engn Design, Chennai, Tamil Nadu, IndiaIndian Spinal Injuries Ctr, Biomech Lab, New Delhi, India
Khatri, Ravi
[1
,2
]
Varghese, Vicky
论文数: 0引用数: 0
h-index: 0
机构:
Indian Spinal Injuries Ctr, Biomech Lab, New Delhi, IndiaIndian Spinal Injuries Ctr, Biomech Lab, New Delhi, India
Varghese, Vicky
[1
]
Sharma, Sunil
论文数: 0引用数: 0
h-index: 0
机构:
Indian Spinal Injuries Ctr, New Delhi, IndiaIndian Spinal Injuries Ctr, Biomech Lab, New Delhi, India
Sharma, Sunil
[3
]
Kumar, Gurunathan Saravana
论文数: 0引用数: 0
h-index: 0
机构:
IIT Madras, Dept Engn Design, Chennai, Tamil Nadu, IndiaIndian Spinal Injuries Ctr, Biomech Lab, New Delhi, India
Kumar, Gurunathan Saravana
[2
]
Chhabra, Harvinder Singh
论文数: 0引用数: 0
h-index: 0
机构:
Indian Spinal Injuries Ctr, Dept Spine Surg, New Delhi, IndiaIndian Spinal Injuries Ctr, Biomech Lab, New Delhi, India
Chhabra, Harvinder Singh
[4
]
机构:
[1] Indian Spinal Injuries Ctr, Biomech Lab, New Delhi, India
[2] IIT Madras, Dept Engn Design, Chennai, Tamil Nadu, India
[3] Indian Spinal Injuries Ctr, New Delhi, India
[4] Indian Spinal Injuries Ctr, Dept Spine Surg, New Delhi, India
Study Design: A biomechanical study. Purpose: To develop a predictive model for pullout strength. Overview of Literature: Spine fusion surgeries are performed to correct joint deformities by restricting motion between two or more unstable vertebrae. The pedicle screw provides a corrective force to the unstable spinal segment and arrests motions at the unit that are being fused. To determine the hold of a screw, surgeons depend on a subjective perioperative feeling of insertion torque. The objective of the paper was to develop a machine learning based model using density of foam, insertion angle, insertion depth, and reinsertion to predict the pullout strength of pedicle screw. Methods: To predict the pullout strength of pedicle screw, an experimental dataset of 48 data points was used as training data to construct a model based on different machine learning algorithms. A total of five algorithms were tested in the Weka environment and the performance was evaluated based on correlation coefficient and error matrix. A sensitive study of various parameters for obtaining the best combination of parameters for predicting the pullout strength was also preformed using the L9 orthogonal array of Taguchi Design of Experiments. Results: Random forest performed the best with a correlation coefficient of 0.96, relative absolute error of 0.28, and root relative squared error of 0.29. The difference between the experimental and predicted value for the six test cases was not significant (p>0.05). Conclusions: This model can be used clinically for understanding the failure of pedicle screw pullout and pre-surgical planning for spine surgeon.
机构:
Univ Hong Kong, Fac Educ, Pokfulam, Hong Kong, Peoples R China
Hong Kong Metropolitan Univ, Sch Sci & Technol, Kowloong, Hong Kong, Peoples R ChinaUniv Hong Kong, Fac Educ, Pokfulam, Hong Kong, Peoples R China
Ezeamuzie, Ndudi O.
Leung, Jessica S. C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Fac Educ, Pokfulam, Hong Kong, Peoples R ChinaUniv Hong Kong, Fac Educ, Pokfulam, Hong Kong, Peoples R China
Leung, Jessica S. C.
Fung, Dennis C. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Fac Educ, Pokfulam, Hong Kong, Peoples R ChinaUniv Hong Kong, Fac Educ, Pokfulam, Hong Kong, Peoples R China
Fung, Dennis C. L.
Ezeamuzie, Mercy N.
论文数: 0引用数: 0
h-index: 0
机构:
Int Christian Sch Hong Kong, Curriculum & Instruct Dept, Sha Tin, Hong Kong, Peoples R ChinaUniv Hong Kong, Fac Educ, Pokfulam, Hong Kong, Peoples R China
机构:
Xi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R China
Lin, Shu
Zhang, Guoqiang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R China
Zhang, Guoqiang
Li, Kaiwen
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Int Res Ctr Polymers 10, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Peoples R ChinaXi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R China
Li, Kaiwen
Pang, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Int Res Ctr Polymers 10, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Peoples R ChinaXi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R China
Pang, Kai
Li, Yushu
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R China
Li, Yushu
Wan, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Mech & Safety Engn, Zhengzhou 450001, Peoples R ChinaXi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R China
Wan, Jing
Qin, Huasong
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R China
Qin, Huasong
Liu, Yilun
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Aerosp, SV Lab, Lab Multiscale Mech & Med Sci, Xian 710049, Peoples R China