Acoustic emission signal processing for the assessment of corrosion behaviour in additively manufactured AlSi10Mg

被引:9
|
作者
Barile, Claudia [1 ,2 ]
Casavola, Caterina [1 ]
Pappalettera, Giovanni [1 ]
Kannan, Vimalathithan Paramsamy [1 ]
Renna, Gilda [1 ]
机构
[1] Dipartimento Meccan Matemat & Management, Via Orabona 4, I-70125 Bari, Italy
[2] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Orabona 4, I-70125 Bari, Italy
关键词
Acoustic emission; Corrosion behaviour; AlSi10Mg alloy; Selective laser melting (SLM); Continuous wavelet transform; STAINLESS-STEEL; RECYCLED POWDER; MECHANISM; REUSE;
D O I
10.1016/j.mechmat.2022.104347
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Acoustic Emission (AE) technique is used for characterizing the corrosion behaviour of the AlSi10Mg specimens prepared from recycled feed-material using the Selective Laser Melting (SLM) Process. The corrosion behaviour is studied by exposing the specimens to a simulated salt attack for a period of 240 h. AE signals are recorded for the entire duration and are analysed in their time-frequency domain. Initially, noises are observed in the recorded AE signals. A methodology based on waveform entropy is developed to denoise the signals. The characteristics of the noise are studied to retain any useful information. The results show that some of the low amplitude signals could be misidentified as noise signals; it is rectified by studying the features of the noise such as peak frequency, frequency centroid and peak amplitude. The time-frequency characteristics of the AE signals are then studied along with the morphological features of the specimens exposed to different stages of corrosion. This provides a correlation between the corrosion behaviour such as pit formation, corrosion product formation and the corrosion crack formation and the time-frequency characteristics of AE signals. This information can identify the corrosion behaviour of the AlSi10Mg specimens intuitively.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Compressive behaviour of additively manufactured AlSi10Mg
    Hitzler, L.
    Schoch, N.
    Heine, B.
    Merkel, M.
    Hall, W.
    Oechsner, A.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2018, 49 (05) : 683 - 688
  • [2] Tensile and compressive behaviour of additively manufactured AlSi10Mg samples
    Enes Sert
    L. Hitzler
    S. Hafenstein
    M. Merkel
    E. Werner
    A. Öchsner
    Progress in Additive Manufacturing, 2020, 5 : 305 - 313
  • [3] Tensile and compressive behaviour of additively manufactured AlSi10Mg samples
    Sert, Enes
    Hitzler, L.
    Hafenstein, S.
    Merkel, M.
    Werner, E.
    Oechsner, A.
    PROGRESS IN ADDITIVE MANUFACTURING, 2020, 5 (03) : 305 - 313
  • [4] The Corrosion Behaviour of Additively Manufactured AlSi10Mg Parts Compared to Traditional Al Alloys
    Gatto, Andrea
    Cappelletti, Camilla
    Defanti, Silvio
    Fabbri, Fabrizio
    METALS, 2023, 13 (05)
  • [5] The influence of AlSi10Mg recycled powder on corrosion-resistance behaviour of additively manufactured components: mechanical aspects and acoustic emission investigation
    Barile, Claudia
    Casavola, Caterina
    Kannan, Vimalathithan Paramsamy
    Renna, Gilda
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2022, 22 (01)
  • [6] Enhancing the corrosion properties of additively manufactured AlSi10Mg using friction stir processing
    Rafieazad, Mehran
    Mohammadi, Mohsen
    Gerlich, Adrian
    Nasiri, Ali
    CORROSION SCIENCE, 2021, 178
  • [7] Shock compression response of additively manufactured AlSi10Mg
    Specht, Paul E.
    Brown, Nathan P.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (24)
  • [8] Fracture prediction of additively manufactured AlSi10Mg materials
    Irmak, E. F. Akbulut
    Troester, T.
    1ST INTERNATIONAL WORKSHOP ON PLASTICITY, DAMAGE AND FRACTURE OF ENGINEERING MATERIALS (IWPDF 2019), 2019, 21 : 190 - 197
  • [9] Fracture locus of additively manufactured AlSi10Mg alloy
    Logakannan, Krishna Prasath
    Ruan, Dong
    Rengaswamy, Jayaganthan
    Kumar, S.
    Ramachandran, Velmurugan
    THIN-WALLED STRUCTURES, 2023, 184
  • [10] Effects of post-processing on the microstructural evolution and mechanical behaviour of an additively manufactured AlSi10Mg alloy
    Ramesh, R.
    Gairola, Saurabh
    Jayaganthan, R.
    Kamaraj, M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 34 : 2802 - 2813