We define the notion of characteristic rank, charrank (X) (xi), of a real vector bundle xi over a connected finite CW-complex X. This is a bundle-dependent version of the notion of characteristic rank introduced by JA(0)lius Korba in 2010. We obtain bounds for the cup length of manifolds in terms of the characteristic rank of vector bundles generalizing a theorem of Korba and compute the characteristic rank of vector bundles over the Dold manifolds, the Moore spaces and the stunted projective spaces amongst others.
机构:
Comenius Univ, Fac Math Phys & Informat, Dept Algebra Geometry & Math Educ, Bratislava 84248 4, Slovakia
Slovak Acad Sci, Inst Math, Bratislava 81473 1, SlovakiaComenius Univ, Fac Math Phys & Informat, Dept Algebra Geometry & Math Educ, Bratislava 84248 4, Slovakia
Korbas, Julius
Naolekar, Aniruddha C.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Stat Math Unit, Bangalore 560059, Karnataka, IndiaComenius Univ, Fac Math Phys & Informat, Dept Algebra Geometry & Math Educ, Bratislava 84248 4, Slovakia
Naolekar, Aniruddha C.
Thakur, Ajay Singh
论文数: 0引用数: 0
h-index: 0
机构:
Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, IndiaComenius Univ, Fac Math Phys & Informat, Dept Algebra Geometry & Math Educ, Bratislava 84248 4, Slovakia