Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks

被引:12
|
作者
Kim, Chang Sik [1 ]
机构
[1] Ctr Comp Sci, Bioinformat Grp, Turku, Finland
来源
BMC BIOINFORMATICS | 2007年 / 8卷
关键词
CYCLIN-DEPENDENT KINASE; YEAST SACCHAROMYCES-CEREVISIAE; B-TYPE CYCLINS; EXPRESSION DATA; PROTEIN COMPLEXES; BUDDING YEAST; CELL-CYCLE; DNA-REPLICATION; IN-VITRO; CDC28;
D O I
10.1186/1471-2105-8-251
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an underdetermined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm. Results: This study presents a novel algorithm for reverse engineering with linear systems. The proposed algorithm is a combination of the orthogonal least squares, second order derivative for network pruning, and Bayesian model comparison. In this study, the entire network is decomposed into a set of small networks that are defined as unit networks. The algorithm provides each unit network with P(D|H-i), which is used as confidence level. The unit network with higher P(D|H-i) has a higher confidence such that the unit network is correctly elucidated. Thus, the proposed algorithm is able to locate true positive interactions using P(D|H-i), which is a unique property of the proposed algorithm. The algorithm is evaluated with synthetic and Saccharomyces cerevisiae expression data using the dynamic Bayesian network. With synthetic data, it is shown that the performance of the algorithm depends on the number of genes, noise level, and the number of data points. With Yeast expression data, it is shown that there is remarkable number of known physical or genetic events among all interactions elucidated by the proposed algorithm. The performance of the algorithm is compared with Sparse Bayesian Learning algorithm using both synthetic and Saccharomyces cerevisiae expression data sets. The comparison experiments show that the algorithm produces sparser solutions with less false positives than Sparse Bayesian Learning algorithm. Conclusion: From our evaluation experiments, we draw the conclusion as follows: 1) Simulation results show that the algorithm can be used to elucidate gene regulatory networks using limited number of experimental data points. 2) Simulation results also show that the algorithm is able to handle the problem with noisy data. 3) The experiment with Yeast expression data shows that the proposed algorithm reliably elucidates known physical or genetic events. 4) The comparison experiments show that the algorithm more efficiently performs than Sparse Bayesian Learning algorithm with noisy and limited number of data.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks
    Chang Sik Kim
    BMC Bioinformatics, 8
  • [2] Reverse engineering for gene regulatory networks by Bayesian orthogonal least squares (BOLS) algorithm
    Kim, Chang Sik
    Salakoski, Tapio
    Vihinen, Mauno
    2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2006, : 29 - +
  • [3] A Parallel Algorithm for Reverse Engineering Gene Regulatory Networks
    Bazil, Jason
    Qi, Feng
    Beard, Daniel A.
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 183A - 184A
  • [4] Reverse engineering gene regulatory networks using approximate Bayesian computation
    Andrea Rau
    Florence Jaffrézic
    Jean-Louis Foulley
    R. W. Doerge
    Statistics and Computing, 2012, 22 : 1257 - 1271
  • [5] Reverse engineering gene regulatory networks using approximate Bayesian computation
    Rau, Andrea
    Jaffrezic, Florence
    Foulley, Jean-Louis
    Doerge, R. W.
    STATISTICS AND COMPUTING, 2012, 22 (06) : 1257 - 1271
  • [6] Reverse engineering gene regulatory networks
    Alexander J Hartemink
    Nature Biotechnology, 2005, 23 : 554 - 555
  • [7] Reverse engineering gene regulatory networks
    Hartemink, AJ
    NATURE BIOTECHNOLOGY, 2005, 23 (05) : 554 - 555
  • [8] Reverse engineering of gene regulatory networks
    Cho, K.-H.
    Choo, S.-M.
    Jung, S. H.
    Kim, J.-R.
    Choi, H.-S.
    Kim, J.
    IET SYSTEMS BIOLOGY, 2007, 1 (03) : 149 - 163
  • [9] Orthogonal Least Squares Algorithm for Training Cascade Neural Networks
    Huang, Gao
    Song, Shiji
    Wu, Cheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (11) : 2629 - 2637
  • [10] A Recursive Orthogonal Least Squares Algorithm for Training RBF Networks
    D.L. Yu
    J.B. Gomm
    D. Williams
    Neural Processing Letters, 1997, 5 : 167 - 176