Advances in Magnetics Roadmap on Spin-Wave Computing

被引:263
|
作者
Chumak, A. V. [1 ]
Kabos, P. [2 ]
Wu, M. [3 ]
Abert, C. [1 ,4 ]
Adelmann, C. [5 ]
Adeyeye, A. O. [6 ]
Akerman, J. [7 ]
Aliev, F. G. [8 ,9 ]
Anane, A. [10 ]
Awad, A. [7 ]
Back, C. H. [1 ,11 ]
Barman, A. [12 ]
Bauer, G. E. W. [13 ,14 ]
Becherer, M. [15 ]
Beginin, E. N. [16 ]
Bittencourt, V. A. S. V. [17 ]
Blanter, Y. M. [18 ]
Bortolotti, P. [10 ]
Boventer, I. [10 ]
Bozhko, D. A. [19 ]
Bunyaev, S. A. [20 ]
Carmiggelt, J. J. [18 ]
Cheenikundil, R. R. [21 ]
Ciubotaru, F. [5 ]
Cotofana, S. [22 ]
Csaba, G. [23 ]
Dobrovolskiy, O. V. [1 ]
Dubs, C. [24 ]
Elyasi, M. [13 ]
Fripp, K. G. [25 ]
Fulara, H. [26 ]
Golovchanskiy, I. A. [27 ,28 ]
Gonzalez-Ballestero, C. [29 ,30 ]
Graczyk, P. [31 ]
Grundler, D. [32 ,33 ]
Gruszecki, P. [34 ]
Gubbiotti, G. [35 ]
Guslienko, K. [36 ,37 ]
Haldar, A. [38 ]
Hamdioui, S. [22 ]
Hertel, R. [21 ]
Hillebrands, B. [39 ]
Hioki, T. [13 ]
Houshang, A. [7 ]
Hu, C. -M. [40 ]
Huebl, H. [41 ]
Huth, M. [42 ]
Iacocca, E. [19 ]
Jungfleisch, M. B. [43 ]
Kakazei, G. N. [20 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] NIST, Boulder, CO 80305 USA
[3] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA
[4] Univ Vienna, Res Platform MMM Math Magnetism Mat, A-1090 Vienna, Austria
[5] IMEC, B-3001 Leuven, Belgium
[6] Univ Durham, Dept Phys, Durham DH1 3LE, England
[7] Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden
[8] Univ Autonoma Madrid, Inst Nicolas Cabrera INC, Dept Fis Mat Condensada C III, E-28049 Madrid, Spain
[9] Univ Autonoma Madrid, Condensed Matter Phys Inst IFIMAC, E-28049 Madrid, Spain
[10] Thales Univ Paris Saclay, CNRS, Unite Mixte Phys, F-91767 Palaiseau, France
[11] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[12] SN Bose Natl Ctr Basic Sci, Dept Condensed Matter Phys & Mat Sci, Kolkata 700106, India
[13] Tohoku Univ, Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[14] Univ Groningen, Zernike Inst Adv Mat, NL-9712 CP Groningen, Netherlands
[15] Tech Univ Munich, Dept Elect & Comp Engn, D-80333 Munich, Germany
[16] Saratov NG Chernyshevskii State Univ, Lab Magnet Metamaterials, Saratov 410012, Russia
[17] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[18] Delft Univ Technol, Kavli Inst Nanosci, Dept Quantum Nanosci, NL-2628 CJ Delft, Netherlands
[19] Univ Colorado, Dept Phys & Energy Sci, Colorado Springs, CO 80918 USA
[20] Univ Porto, Dept Fis & Astron, Inst Phys Adv Mat Nanotechnol & Photon IFIMUP, P-4169007 Porto, Portugal
[21] Univ Strasbourg, CNRS, Inst Phys & Chim Mat Strasbourg, UMR 7504, F-67000 Strasbourg, France
[22] Delft Univ Technol, Dept Quantum & Comp Engn, NL-2628 CD Delft, Netherlands
[23] Pazmany Peter Catholic Univ, Fac Informat Technol & Bion, H-1083 Budapest, Hungary
[24] INNOVENT eV Technologieentwicklung, D-07745 Jena, Germany
[25] Univ Exeter, Dept Phys & Astron, Exeter EX4 4QL, Devon, England
[26] IIT Roorkee, Dept Phys, Roorkee 247667, Uttar Pradesh, India
[27] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[28] Natl Univ Sci & Technol MISIS, Moscow 119049, Russia
[29] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[30] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[31] Polish Acad Sci, Inst Mol Phys, PL-60179 Poznan, Poland
[32] Ecole Polytech Fed Lausanne EPFL, Inst Mat IMX, CH-1015 Lausanne, Switzerland
[33] Ecole Polytech Fed Lausanne EPFL, Inst Elect & Micro Engn IEM, CH-1015 Lausanne, Switzerland
[34] Adam Mickiewicz Univ, Inst Spintron & Quantum Informat ISQI, Fac Phys, PL-61614 Poznan, Poland
[35] Univ Perugia, CNR, Ist Officina Mat IOM, Dipartimento Fis & Geol, I-06123 Perugia, Italy
[36] Univ Pais Vasco UPV EHU, Div Fis Mat, Depto Polimeros & Mat Avanzados, Fis Quim & Tecnol, San Sebastian 20018, Spain
[37] Basque Fdn Sci, IKERBASQUE, Bilbao 48009, Spain
[38] IIT Hyderabad, Dept Phys, Kandi 502284, India
[39] Tech Univ Kaiserslautern, Fachbereich Physik & Landesforschungszentrum OPTI, D-67663 Kaiserslautern, Germany
[40] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
[41] Bayer Akademie Wissensch, Walther Meissner Inst, D-85748 Garching, Germany
[42] Goethe Univ, Physikal Inst, D-60438 Frankfurt, Germany
[43] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[44] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[45] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[46] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[47] Univ Grenoble Alpes, CNRS, Alternat Energies & Atom Energy Commiss CEA, Spintec,Grenoble INP, F-38054 Grenoble, France
[48] Univ Western Australia, Dept Phys & Astrophys, Perth, WA 6009, Australia
[49] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[50] Nord Quant, Sherbrooke, PQ, Canada
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Magnonics; Physics; Three-dimensional displays; Quantum computing; Nanoscale devices; Magnetic domains; Logic gates; Computing; data processing; magnon; magnonics; spin wave; ROOM-TEMPERATURE; MICROMAGNETIC SIMULATIONS; TUNABLE MAGNETISM; MAGNONIC CRYSTAL; DOMAIN-WALLS; PROPAGATION; MODES; RESONANCE; STATES; SPECTROSCOPY;
D O I
10.1109/TMAG.2022.3149664
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the academic domain, the scientific and technological challenges of the field are being extensively investigated, and many proof-of-concept prototypes have already been realized in laboratories. This roadmap is a product of the collective work of many authors, which covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. In particular, the roadmap discusses the computation operations with the Boolean digital data, unconventional approaches, such as neuromorphic computing, and the progress toward magnon-based quantum computing. This article is organized as a collection of sub-sections grouped into seven large thematic sections. Each sub-section is prepared by one or a group of authors and concludes with a brief description of current challenges and the outlook of further development for each research direction.
引用
收藏
页数:72
相关论文
共 50 条
  • [1] Spin-wave contributions to nuclear magnetics relaxation in magnetic metals
    Irkhin, VY
    Katsnelson, MI
    PHYSICAL REVIEW B, 1999, 60 (21): : 14569 - 14572
  • [2] SPIN-WAVE PATTERNS AND SPIN-WAVE TURBULENCE
    ELMER, FJ
    HELVETICA PHYSICA ACTA, 1994, 67 (02): : 205 - 206
  • [3] Spin-wave based realization of optical computing primitives
    Csaba, G.
    Papp, A.
    Porod, W.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [4] WHAT IS THE SPIN OF A SPIN-WAVE
    FADDEEV, LD
    TAKHTAJAN, LA
    PHYSICS LETTERS A, 1981, 85 (6-7) : 375 - 377
  • [5] Characterization of nonlinear spin-wave interference by reservoir-computing metrics
    Papp, A.
    Csaba, G.
    Porod, W.
    APPLIED PHYSICS LETTERS, 2021, 119 (11)
  • [6] ON SPIN-WAVE STATISTICS
    FRANK, D
    MEYER, K
    SOVIET PHYSICS JETP-USSR, 1963, 16 (01): : 215 - 216
  • [7] Spin-wave manipulation
    Noriaki Horiuchi
    Nature Photonics, 2012, 6 : 706 - 706
  • [8] Spin-wave quantum computing with atoms in a single-mode cavity
    Cox, Kevin C.
    Bienias, Przemyslaw
    Meyer, David H.
    Fahey, Donald P.
    Kunz, Paul D.
    Gorshkov, Alexey, V
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [9] Spin-wave interference
    Choi, Sangkook
    Lee, Ki-Suk
    Kim, Sang-Koog
    APPLIED PHYSICS LETTERS, 2006, 89 (06)
  • [10] Spin-wave manipulation
    Horiuchi, Noriaki
    Satoh, Takuya
    NATURE PHOTONICS, 2012, 6 (10) : 706 - 706