Color, Edge, and Pixel-wise Explanation of Predictions Based on Interpretable Neural Network Model

被引:6
|
作者
Jung, Jay Hoon [1 ]
Kwon, YoungMin [1 ]
机构
[1] State Univ New York Korea, Comp Sci Dept, Incheon, South Korea
关键词
Interpretable Neural Network; Deep Neural Network;
D O I
10.1109/ICPR48806.2021.9413304
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We design an interpretable network model by in troducing explainable components into a Deep Neural Network (DNN). We substituted the first kernels of a Convolutional Neural Network (CNN) and a ResNet-50 with the well-known edge detecting filters such as Sobel, Prewitt, and other filters. Each filters' relative importance scores are measured with a variant of Layer-wise Relevance Propagation (LRP) method proposed by [1]. Since the effects of the edge detecting filters are well understood, our model provides three different scores to explain individual predictions: the scores with respect to (1) colors, (2) edge filters, and (3) pixels of the image. Our method provides more tools to analyze the predictions by highlighting the location of important edges and colors in the images. Furthermore, the general features of a category can be shown in our scores as well as individual predictions. At the same time, the model does not degrade performances on MNIST, Fruit360 and ImageNet datasets.
引用
收藏
页码:6003 / 6010
页数:8
相关论文
共 50 条
  • [1] Pixel-wise visible image registration based on deep neural network
    Huang C.
    Cheng J.
    Pan X.
    Song N.
    Liu B.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (03): : 522 - 532
  • [2] Convolutional Neural Network for Pixel-Wise Skyline Detection
    Frajberg, Darian
    Fraternali, Piero
    Torres, Rocio Nahime
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 12 - 20
  • [3] Deep convolutional neural network–based pixel-wise landslide inventory mapping
    Zhaoyu Su
    Jun Kang Chow
    Pin Siang Tan
    Jimmy Wu
    Ying Kit Ho
    Yu-Hsing Wang
    Landslides, 2021, 18 : 1421 - 1443
  • [4] A pixel-wise framework based on convolutional neural network for surface defect detection
    Dong, Guozhen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (09) : 8786 - 8803
  • [5] Pixel-Wise Based Digital Watermarking in YCbCr Color Space
    Surachat, Komwit
    Amornraksa, Thumrongrat
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2009, 2009, 5879 : 1293 - 1299
  • [6] Deep convolutional neural network-based pixel-wise landslide inventory mapping
    Su, Zhaoyu
    Chow, Jun Kang
    Tan, Pin Siang
    Wu, Jimmy
    Ho, Ying Kit
    Wang, Yu-Hsing
    LANDSLIDES, 2021, 18 (04) : 1421 - 1443
  • [7] EddyNet: A Deep Neural Network For Pixel-Wise Classification of Oceanic Eddies
    Lguensat, Redouane
    Sun, Miao
    Fablet, Ronan
    Mason, Evan
    Tandeo, Pierre
    Chen, Ge
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1764 - 1767
  • [8] PIXEL-WISE NEURAL CELL INSTANCE SEGMENTATION
    Yi, Jingru
    Wu, Pengxiang
    Hoeppner, Daniel J.
    Metaxas, Dimitris
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 373 - 377
  • [9] ApesNet: A Pixel-wise Efficient Segmentation Network
    Wu, Chunpeng
    Cheng, Hsin-Pai
    Li, Sicheng
    Li, Hai
    Chen, Yiran
    14TH ACM/IEEE SYMPOSIUM ON EMBEDDED SYSTEMS FOR REAL-TIME MULTIMEDIA (ESTIMEDIA 2016), 2016, : 2 - 8
  • [10] Towards interpretable and robust hand detection via pixel-wise prediction
    Liu, Dan
    Zhang, Libo
    Luo, Tiejian
    Tao, Lili
    Wu, Yanjun
    PATTERN RECOGNITION, 2020, 105