MULTIPLE POSITIVE SOLUTIONS FOR SCHRODINGER-POISSON SYSTEM IN R3 INVOLVING CONCAVE-CONVEX NONLINEARITIES WITH CRITICAL EXPONENT

被引:12
|
作者
Li, Miao-Miao [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Poisson system; Mountain Pass Theorem; Ekeland's variational principle; critical exponent; concentration compactness principle; SEMILINEAR ELLIPTIC-EQUATIONS; THOMAS-FERMI; R-N; ATOMS;
D O I
10.3934/cpaa.2017076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of multiple positive solutions of the following Schrodinger-Poisson system with critical exponent { -Delta u - l(x)phi u = lambda h(x)vertical bar u vertical bar(q-2)u + vertical bar u vertical bar(4)u, in R-3, -Delta phi = l(x)u(2), in R-3, where 1 < q < 2 and lambda > 0. Under some appropriate conditions on l and h, we show that there exists lambda* > 0 such that the above problem has at least two positive solutions for each lambda is an element of (0, lambda*) by using the Mountain Pass Theorem and Ekeland's Variational Principle.
引用
下载
收藏
页码:1587 / 1602
页数:16
相关论文
共 50 条