A Primal-Dual Quasi-Newton Method for Consensus Optimization

被引:0
|
作者
Eisen, Mark [1 ]
Mokhtari, Aryan [2 ]
Ribeiro, Alejandro [1 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[2] Univ Calif Berkeley, Simons Inst Theory Comp, Berkeley, CA 94720 USA
关键词
Multi-agent network; consensus optimization; quasi-Newton methods; primal-dual; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the primal-dual quasi-Newton (PDQN) method as an approximated second order method for solving decentralized optimization problems. The PD-QN method performs quasi-Newton, or approximate second order, updates on both the primal and dual variables of the consensus optimization problem. The quasi-Newton updates remove the internal minimization step necessary in most dual methods and also make the method more robust in ill-conditioned settings relative to first order methods. The linear convergence rate of PD-QN is established formally and strong performance advantages relative to existing dual and primal-dual methods are shown numerically.
引用
收藏
页码:298 / 302
页数:5
相关论文
共 50 条
  • [1] A Primal-Dual Quasi-Newton Method for Exact Consensus Optimization
    Eisen, Mark
    Mokhtari, Aryan
    Ribeiro, Alejandro
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (23) : 5983 - 5997
  • [2] A Decentralized Quasi-Newton Method for Dual Formulations of Consensus Optimization
    Eisen, Mark
    Mokhtari, Aryan
    Ribeiro, Alejandro
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 1951 - 1958
  • [3] AN ASYNCHRONOUS QUASI-NEWTON METHOD FOR CONSENSUS OPTIMIZATION
    Eisen, Mark
    Mokhtari, Aryan
    Ribeiro, Alejandro
    [J]. 2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 570 - 574
  • [4] Q-superlinear convergence of primal-dual interior point quasi-Newton methods for constrained optimization
    Yabe, H
    Yamashita, H
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1997, 40 (03) : 415 - 436
  • [5] Primal-dual Newton methods in structural optimization
    Hoppe, Ronald H. W.
    Linsenmann, Christopher
    Petrova, Svetozara I.
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2006, 9 (02) : 71 - 87
  • [6] A randomized incremental primal-dual method for decentralized consensus optimization
    Chen, Chenxi
    Chen, Yunmei
    Ye, Xiaojing
    [J]. ANALYSIS AND APPLICATIONS, 2021, 19 (03) : 465 - 489
  • [7] New complexity analysis of the primal-dual Newton method for linear optimization
    Peng, J
    Roos, C
    Terlaky, T
    [J]. ANNALS OF OPERATIONS RESEARCH, 2000, 99 (1-4) : 23 - 39
  • [8] A Primal-Dual Newton Method for Distributed Quadratic Programming
    Klintberg, Emil
    Gros, Sebastien
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5843 - 5848
  • [9] Distributed Constrained Optimization by Consensus-Based Primal-Dual Perturbation Method
    Chang, Tsung-Hui
    Nedic, Angelia
    Scaglione, Anna
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (06) : 1524 - 1538
  • [10] Distributed Primal-Dual Subgradient Method for Multiagent Optimization via Consensus Algorithms
    Yuan, Deming
    Xu, Shengyuan
    Zhao, Huanyu
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (06): : 1715 - 1724