Tracking topological changes in parametric models

被引:11
|
作者
van der Meiden, Hilderick A. [1 ]
Bronsvoort, Willem F. [1 ]
机构
[1] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, NL-2628 CD Delft, Netherlands
关键词
CAD; Parametric modelling; Families of objects; Topology; Constraint solving; GEOMETRIC CONSTRAINTS; CELLULAR-MODEL; REPRESENTATION; SYSTEMS;
D O I
10.1016/j.cagd.2009.12.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In current parametric CAD systems. the relation between the values of the parameters of a model and the topology of the model is often not clear to the user. To give the user better control over the topology of the model, this relation should be made explicit. A method is presented here that determines the parameter Values for Which the topology of a model changes, i.e. the critical values of a given variant parameter. The considered model consists of a system of geometric constraints, which relates parameters and feature geometries, and a cellular model, which partitions space into volumetric cells determined by the intersections of the feature geometries and represented by topological entities. Our method creates a new system of geometric constraints to relate the parameters of the model to the topological entities. For each entity that is dependent on the variant parameter, degenerate cases are enforced by specific geometric constraints. Solving the resulting constraint systems yields the critical parameter values. Critical values can be used to compute parameter ranges corresponding to families of objects. i.e. all parameter values which correspond to models that satisfy a given set of geometric and topological constraints. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 50 条
  • [1] Shape optimization with topological changes and parametric control
    Chen, Jiaqin
    Shapiro, Vadim
    Suresh, Krishnan
    Tsukanov, Igor
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 71 (03) : 313 - 346
  • [2] A topological entity matching technique for geometric parametric models
    Agbodan, D
    Marcheix, D
    Pierra, G
    Thabaud, C
    [J]. SMI 2003: SHAPE MODELING INTERNATIONAL 2003, PROCEEDINGS, 2003, : 235 - 244
  • [3] Efficient region tracking with parametric models of geometry and illumination
    Hager, GD
    Belhumeur, PN
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (10) : 1025 - 1039
  • [4] Distributed Personalized Gradient Tracking With Convex Parametric Models
    Notarnicola, Ivano
    Simonetto, Andrea
    Farina, Francesco
    Notarstefano, Giuseppe
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (01) : 588 - 595
  • [5] Improving the robustness of parametric shape tracking with switched multiple models
    Nascimento, JC
    Marques, JS
    [J]. PATTERN RECOGNITION, 2002, 35 (12) : 2711 - 2718
  • [6] Four years tracking unrevealed topological changes in the african interdomain
    Fanou, R.
    Francois, P.
    Aben, E.
    Mwangi, M.
    Goburdhan, N.
    Valera, E.
    [J]. COMPUTER COMMUNICATIONS, 2017, 106 : 117 - 135
  • [7] A mechanism for persistently naming topological entities in history-based parametric solid models
    Kripac, J
    [J]. COMPUTER-AIDED DESIGN, 1997, 29 (02) : 113 - 122
  • [8] Tracking Changes in Climate Sensitivity in CNRM Climate Models
    Saint-Martin, D.
    Geoffroy, O.
    Voldoire, A.
    Cattiaux, J.
    Brient, F.
    Chauvin, F.
    Chevallier, M.
    Colin, J.
    Decharme, B.
    Delire, C.
    Douville, H.
    Gueremy, J-F
    Joetzjer, E.
    Ribes, A.
    Roehrig, R.
    Terray, L.
    Valcke, S.
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2021, 13 (06)
  • [9] A topological nonlinear parametric amplifier
    Byoung-Uk Sohn
    Yue-Xin Huang
    Ju Won Choi
    George F. R. Chen
    Doris K. T. Ng
    Shengyuan A. Yang
    Dawn T. H. Tan
    [J]. Nature Communications, 13
  • [10] TOPOLOGICAL CONSIDERATIONS OF PARAMETRIC ELECTROMECHANICAL DEVICES AND THEIR PARAMETRIC ANALYSIS
    KAPLAN, BZ
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1976, 12 (04) : 373 - 380