Ultrafine Co@nitrogen-doped carbon core-shell nanostructures anchored on carbon nanotubes for highly efficient oxygen reduction

被引:23
|
作者
Quan, Li [1 ]
Yu, Xuelian [1 ]
Wang, Tao [1 ]
Yin, Wenchao [1 ]
Liu, Jianqiao [1 ]
Wang, Lin [1 ]
Zhang, Yihe [1 ]
机构
[1] China Univ Geosci, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
关键词
Core-shell; Electrocatalysts; Electronic coupling; Oxygen reduction reaction; Metal-organic frameworks; ELECTROCATALYTIC ACTIVITY; CATALYSTS; HYBRID; FRAMEWORKS;
D O I
10.1016/j.apsusc.2019.07.157
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rational design of non-noble-metal electrocatalysts for oxygen reduction reaction (ORR) with both excellent activity and robust stability still remains a key challenge nowadays. Herein, N-doped carbon wrapped Co nanoparticles core-shell nanostructures grafted on carbon nanotubes (Co@NC@CNTs) were achieved by a simple pyrolysis process using ZIF-67 and CNTs as precursors. Most importantly, this unique structure of Co@NC@CNTs is beneficial to increase the contact area of N-doped carbon and Co, inhibit the aggregation of Co@NC core-shell nanoparticles and protect the Co from dissolution, thus improving the electrocatalytic performance and stability for ORR. As a result, the well-defined Co@NC@CNTs electrocatalyst exhibits excellent ORR activity with a high onset potential, half-wave potential and limited current density, comparable to the commercial Pt/C in alkaline electrolyte. Furthermore, the Co@NC@CNTs electrocatalyst presents outstanding electrochemical durability and methanol tolerance in comparison with Pt/C. This strategy will open a new avenue toward the development of nonprecious high-performance ORR catalysts.
引用
收藏
页码:691 / 699
页数:9
相关论文
共 50 条
  • [1] Homogenous Core-Shell Nitrogen-Doped Carbon Nanotubes for the Oxygen Reduction Reaction
    Liu, Jiehua
    Shen, Anli
    Wei, Xiangfeng
    Wang, Shuangyin
    Zhou, Kuan
    Xu, Jiaqi
    CHEMELECTROCHEM, 2015, 2 (12): : 1892 - 1896
  • [2] Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions
    Shi, Peng-Chao
    Yi, Jun-Dong
    Liu, Tao-Tao
    Li, Lan
    Zhang, Lin-Jie
    Sun, Chuan-Fu
    Wang, Yao-Bing
    Huang, Yuan-Biao
    Cao, Rong
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) : 12322 - 12329
  • [3] Nitrogen and Carbon Co-Doped CoOx Nanostructures for Oxygen Reduction
    Zhang, Xinyu
    Huang, Wenkai
    Wang, Yanlan
    Zhang, Jun
    Liu, Xiang
    ACS APPLIED NANO MATERIALS, 2023, 6 (07) : 5527 - 5534
  • [4] Carbon nanotubes anchored onto hollow carbon for efficient oxygen reduction
    Sun, Qiuhong
    Chen, Dandan
    Huang, Qi
    Huang, Shaoming
    Qian, Jinjie
    SCIENCE CHINA-MATERIALS, 2023, 66 (02) : 641 - 650
  • [5] Nitrogen-doped carbon coatings on carbon nanotubes as efficient oxygen reduction catalysts
    Li Li-xiang
    Zhao, Hong-wei
    Xing Tian-yu
    Geng Xin
    Song Ren-feng
    An Bai-gang
    NEW CARBON MATERIALS, 2017, 32 (05) : 419 - 426
  • [6] Core-shell Co/CoNx@C nanoparticles enfolded by Co-N doped carbon nanosheets as a highly efficient electrocatalyst for oxygen reduction reaction
    Song, Jingya
    Ren, Yurong
    Li, Jingsha
    Huang, Xiaobing
    Cheng, Fangyi
    Tang, Yougen
    Wang, Haiyan
    CARBON, 2018, 138 : 300 - 308
  • [7] A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction
    Li, Jin-Cheng
    Zhao, Shi-Yong
    Hou, Peng-Xiang
    Fang, Ruo-Pian
    Liu, Chang
    Liang, Ji
    Luan, Jian
    Shan, Xu-Yi
    Cheng, Hui-Ming
    NANOSCALE, 2015, 7 (45) : 19201 - 19206
  • [8] Core-shell structured metal organic framework materials derived cobalt/iron-nitrogen Co-doped carbon electrocatalysts for efficient oxygen reduction
    Guo, Zhiyuan
    Liu, Shaoming
    Hu, Xiao
    Song, Jie
    Xu, Ke
    Ye, Qing
    Xu, Guizhi
    Deng, Zhanfeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (14) : 9341 - 9350
  • [9] Co@C core-shell nanostructures anchored on carbon cloth for activation of peroxymonosulfate to degrade tetracycline
    Zhang, Quanzhi
    Tian, Jun
    Hu, Yi
    Wu, Shaolin
    Chen, Dezhi
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (01):
  • [10] Core-shell Co@Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction
    Xiao, Junwu
    Chen, Chen
    Xi, Jiangbo
    Xu, Yangyang
    Xiao, Fei
    Wang, Shuai
    Yang, Shihe
    NANOSCALE, 2015, 7 (16) : 7056 - 7064