共 50 条
Prediction Model for Hospital-Acquired Pressure Ulcer Development: Retrospective Cohort Study
被引:33
|作者:
Hyun, Sookyung
[1
]
Moffatt-Bruce, Susan
[2
,3
]
Cooper, Cheryl
[4
]
Hixon, Brenda
[5
]
Kaewprag, Pacharmon
[6
]
机构:
[1] Pusan Natl Univ, Coll Nursing, 49 Busandaehak Ro Mulgeum Eup, Yangsan Si 50612, South Korea
[2] Ohio State Univ, Dept Surg, Wexner Med Ctr, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Biomed Informat, Wexner Med Ctr, Columbus, OH 43210 USA
[4] Ohio State Univ, Cent Qual & Educ, Wexner Med Ctr, Columbus, OH 43210 USA
[5] Ohio State Univ, Hlth Syst Nursing Educ, Wexner Med Ctr, Columbus, OH 43210 USA
[6] Ramkhamhang Univ, Dept Comp Engn, Bangkok, Thailand
关键词:
pressure ulcers;
electronic health records;
logistic model;
critical care;
INTENSIVE-CARE UNITS;
RISK-FACTORS;
PREVALENCE;
D O I:
10.2196/13785
中图分类号:
R-058 [];
学科分类号:
摘要:
Background: A pressure ulcer is injury to the skin or underlying tissue, caused by pressure, friction, and moisture. Hospital-acquired pressure ulcers (HAPUs) may not only result in additional length of hospital stay and associated care costs but also lead to undesirable patient outcomes. Intensive care unit (ICU) patients show higher risk for HAPU development than general patients. We hypothesize that the care team's decisions relative to HAPU risk assessment and prevention may be better supported by a data-driven, ICU-specific prediction model. Objective: The aim of this study was to determine whether multiple logistic regression with ICU-specific predictor variables was suitable for ICU HAPU prediction and to compare the performance of the model with the Braden scale on this specific population. Methods: We conducted a retrospective cohort study by using the data retrieved from the enterprise data warehouse of an academic medical center. Bivariate analyses were performed to compare the HAPU and non-HAPU groups. Multiple logistic regression was used to develop a prediction model with significant predictor variables from the bivariate analyses. Sensitivity, specificity, positive predictive values, negative predictive values, area under the receiver operating characteristic curve (AUC), and Youden index were used to compare with the Braden scale. Results: The total number of patient encounters studied was 12,654. The number of patients who developed an HAPU during their ICU stay was 735 (5.81% of the incidence rate). Age, gender, weight, diabetes, vasopressor, isolation, endotracheal tube, ventilator episode, Braden score, and ventilator days were significantly associated with HAPU. The overall accuracy of the model was 91.7%, and the AUC was.737. The sensitivity, specificity, positive predictive value, negative predictive value, and Youden index were .650, .693, .211, 956, and .342, respectively. Male patients were 1.5 times more, patients with diabetes were 1.5 times more, and patients under isolation were 3.1 times more likely to have an HAPU than female patients, patients without diabetes, and patients not under isolation, respectively. Conclusions: Using an extremely large, electronic health record-derived dataset enabled us to compare characteristics of patients who develop an HAPU during their ICU stay with those who did not, and it also enabled us to develop a prediction model from the empirical data. The model showed acceptable performance compared with the Braden scale. The model may assist with clinicians' decision on risk assessment, in addition to the Braden scale, as it is not difficult to interpret and apply to clinical practice. This approach may support avoidable reductions in HAPU incidence in intensive care.
引用
收藏
页数:9
相关论文