Small dispersion approximation of shock wave dynamics

被引:0
|
作者
Perepelitsa, Misha [1 ]
机构
[1] Univ Houston, Dept Math, 4800 Calhoun Rd, Houston, TX 77204 USA
来源
关键词
Shock waves; Entropy solutions; Kinetic equations;
D O I
10.1007/s00033-022-01713-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a dispersion approximation model for weak, entropy solutions of multidimensional scalar conservation laws using variational kinetic representation, where equilibrium densities satisfy Gibb's entropy minimization principle for a piecewise linear, convex entropy. For such solutions, we show that small scale discontinuities, measured by the entropy increments, propagate with characteristic velocities, while the large-scale, shock-type discontinuities propagate with speeds close to the speeds of classical shock waves. In the zero-limit of the scale parameter, approximate solutions converge to a unique, entropy solution of a scalar conservation law.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Small dispersion approximation of shock wave dynamics
    Misha Perepelitsa
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [2] Effect of collision dynamics of particles on the processes of shock wave dispersion
    Khmel, T. A.
    Fedorov, A. V.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2016, 52 (02) : 207 - 218
  • [3] Effect of collision dynamics of particles on the processes of shock wave dispersion
    T. A. Khmel’
    A. V. Fedorov
    Combustion, Explosion, and Shock Waves, 2016, 52 : 207 - 218
  • [4] NUMERICAL MODELING OF THE DYNAMICS OF SHOCK-WAVE DISPERSION IN COMPOSITION MATERIALS
    IVANOV, MF
    PARSHIKOV, AN
    GALBURT, VA
    KHIMICHESKAYA FIZIKA, 1995, 14 (01): : 89 - 95
  • [5] Dynamics of dust dispersion from the layer behind the propagating shock wave
    Klemens, R
    Zydak, P
    Kaluzny, M
    Litwin, D
    Wolanski, P
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2006, 19 (2-3) : 200 - 209
  • [6] Shock wave profiles in the Burnett approximation
    Uribe, FJ
    Velasco, RM
    García-Colín, LS
    Díaz-Herrera, E
    PHYSICAL REVIEW E, 2000, 62 (05) : 6648 - 6666
  • [7] DISPERSION AND SHOCK-WAVE STRUCTURE
    SMOLLER, JA
    SHAPIRO, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (02) : 281 - 305
  • [8] Strong shock approximation in the new theory of shock dynamics
    Ravindran, R
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1997, 50 : 251 - 259
  • [9] Strong shock approximation in the new theory of shock dynamics
    Ravindran, Renuka
    Quarterly Journal of Mechanics and Applied Mathematics, 1997, 50 (pt 2): : 251 - 259
  • [10] Unsteady shock wave dynamics
    Bruce, P. J. K.
    Babinsky, H.
    JOURNAL OF FLUID MECHANICS, 2008, 603 : 463 - 473