Electric-field-driven deracemization

被引:13
|
作者
Kane, Alexander
Shao, Ren-Fan
Maclennan, Joseph E.
Wang, Lixing
Walba, David M.
Clark, Noel A. [1 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[3] Univ Colorado, Liquid Crystal Mat Res Ctr, Boulder, CO 80309 USA
关键词
chirality; electric field; enantiomers; liquid crystals; mean-field model;
D O I
10.1002/cphc.200600463
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate, both theoretically and experimentally, that it is possible to use an electric field to drive the formation of macroscopic chiral (conglomerate) domains from an initially homogeneous fluid racemate. Field-induced segregation is exhibited in a fluid smectic liquid-crystal phase of a racemic mesogen, wherein enantiomerically-enriched domains are readily identifiable by their chiral electro-optical response. The sharp field-generated boundaries that form between opposite-handed domains broaden by diffusion in the absence of field, but reform rapidly if the field is switched on again, providing unambiguous evidence for the field-driven physical separation of enantiomers. A mean-field model successfully describes the steady-state and the dynamic evolution of conglomerate formation.
引用
收藏
页码:170 / 174
页数:5
相关论文
共 50 条
  • [1] Electric-Field-Driven Direct Desulfurization
    Borca, Bogdana
    Michnowicz, Tomasz
    Petuya, Remi
    Pristl, Marcel
    Schendel, Verena
    Pentegov, Ivan
    Kraft, Ulrike
    Klauk, Hagen
    Wahl, Peter
    Gutzler, Rico
    Arnau, Andres
    Schlickum, Uta
    Kern, Klaus
    ACS NANO, 2017, 11 (05) : 4703 - 4709
  • [2] Electric-field-driven instabilities on superhydrophobic surfaces
    Oh, J. M.
    Manukyan, G.
    van den Ende, D.
    Mugele, F.
    EPL, 2011, 93 (05)
  • [3] Electric-field-driven octahedral rotation in perovskite
    Kyung, Wonshik
    Kim, Choong H.
    Kim, Yeong Kwan
    Kim, Beomyoung
    Kim, Chul
    Jung, Woobin
    Kwon, Junyoung
    Kim, Minsoo
    Bostwick, Aaron
    Denlinger, Jonathan D.
    Yoshida, Yoshiyuki
    Kim, Changyoung
    NPJ QUANTUM MATERIALS, 2021, 6 (01)
  • [4] Electric-field-driven hole carriers and superconductivity in diamond
    Nakamura, K.
    Rhim, S. H.
    Sugiyama, A.
    Sano, K.
    Akiyama, T.
    Ito, T.
    Weinert, M.
    Freeman, A. J.
    PHYSICAL REVIEW B, 2013, 87 (21):
  • [5] Purely Electric-Field-Driven Perpendicular Magnetization Reversal
    Hu, Jia-Mian
    Yang, Tiannan
    Wang, Jianjun
    Huang, Houbing
    Zhang, Jinxing
    Chen, Long-Qing
    Nan, Ce-Wen
    NANO LETTERS, 2015, 15 (01) : 616 - 622
  • [6] Electric-field-driven switching of individual magnetic skyrmions
    Hsu P.-J.
    Kubetzka A.
    Finco A.
    Romming N.
    Von Bergmann K.
    Wiesendanger R.
    Nature Nanotechnology, 2017, 12 (2) : 123 - 126
  • [7] Electric-field-driven switching of individual magnetic skyrrnions
    Hsu, Pin-Jui
    Kubetzka, Andre
    Finco, Aurore
    Romming, Niklas
    von Bergmann, Kirsten
    Wiesendanger, Roland
    NATURE NANOTECHNOLOGY, 2017, 12 (02) : 123 - 126
  • [8] Electric-field-driven phase transition in vanadium dioxide
    Wu, B.
    Zimmers, A.
    Aubin, H.
    Ghosh, R.
    Liu, Y.
    Lopez, R.
    PHYSICAL REVIEW B, 2011, 84 (24)
  • [9] Morphologies of electric-field-driven cracks in dried dispersions of ellipsoids
    Emerse, Megha
    Lama, Hisay
    Basavaraj, Madivala G.
    Singh, Rajesh
    Satapathy, Dillip K.
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [10] Electric-Field-Driven Translocation of ssDNA through Hydrophobic Nanopores
    Haynes, Taylor
    Smith, Lain P. S.
    Wallace, E. Jayne
    Trick, Jemma L.
    Sansom, Mark S. P.
    Khalid, Syma
    ACS NANO, 2018, 12 (08) : 8208 - 8213